Targeting Blood Vessel Excitability to Reduce Tau Pathology in Alzheimer’s Disease

About the Research Project
Program
Award Type
Standard
Award Amount
$300,000
Active Dates
September 01, 2020 - August 31, 2023
Grant ID
A20201775S
Goals
Overactive neurons are thought to be a driver of Alzheimer’s disease pathology. Therefore, identifying new ways to reduce brain excitability is an important strategy for treating Alzheimer’s disease. This proposal will explore how targeting the brain’s vasculature by repurposing an FDA approved drug can dampen overactive neurons and decrease Alzheimer’s pathology.
Summary
Brain hyperexcitability is a defining feature of Alzheimer’s disease and represents a promising therapeutic target for treating this devastating disease. Our preliminary data suggests that sulfonylureas, a diabetic medication used to treat high blood sugar, can act on the vasculature to reduce brain hyperexcitability and amyloid plaque formation. Since brain hyperexcitability can also drive the development of neurofibrillary tangles, we will explore whether treatment with sulfonylureas can reduce tau pathology and preserve healthy brain function. Not only will we test a novel application for sulfonylureas in the fight against Alzheimer’s disease, but we will use cutting edge imaging techniques to assess neuronal structure and network function. Ultimately, our findings would demonstrate that therapeutics directed at neurovascular function have the ability to decrease Alzheimer’s related pathology, opening the door for new therapeutic approaches for Alzheimer’s disease.
Grants
Related Grants
Alzheimer's Disease Research
Regulatory Mechanisms Underlying Endosomal Targeting of SORL1
Active Dates
January 01, 2025 - December 31, 2026
Principal Investigator
Olav Andersen, PhD
Regulatory Mechanisms Underlying Endosomal Targeting of SORL1
Active Dates
January 01, 2025 - December 31, 2026

Principal Investigator
Olav Andersen, PhD
Alzheimer's Disease Research
The Role of DYRK1A in Altered Microglia Biology in a Cellular Model of Alzheimer’s Disease in Down Syndrome
Active Dates
January 01, 2025 - December 31, 2027
Principal Investigator
Frances Wiseman, PhD
The Role of DYRK1A in Altered Microglia Biology in a Cellular Model of Alzheimer’s Disease in Down Syndrome
Active Dates
January 01, 2025 - December 31, 2027

Principal Investigator
Frances Wiseman, PhD
Alzheimer's Disease Research
Synergistic Effects of Biological Sex and Sleep Loss in an AD Mouse Model
Active Dates
January 01, 2025 - December 31, 2026
Principal Investigator
Mallar Chakravarty, PhD
Synergistic Effects of Biological Sex and Sleep Loss in an AD Mouse Model
Active Dates
January 01, 2025 - December 31, 2026
Principal Investigator
Mallar Chakravarty, PhD