Molecular Targets of Synaptic Dysfunction in AD

About the Research Project
Program
Award Type
Standard
Award Amount
$300,000
Active Dates
April 01, 2004 - March 31, 2006
Grant ID
A2004004
Summary
A significant amount of early memory deficit in Alzheimer’s disease (AD) is caused by abnormal communication between nerve cells in the hippocampus, a brain region dedicated to memory formation. Such communication occurs at excitatory synapses, specialized cell-cell contact sites where the neurotransmitter glutamate is released and detected. A prominent form of AD-associated synapse dysfunction is the impairment of synaptic plasticity by beta-amyloid (Aß), the protein fragment that accumulates in the brains of Alzheimer’s patients. A newly recognized mechanism for changing synaptic strength is the removal of neurotransmitter receptors that detect the neurotransmitter glutamate by a process called endocytosis. Dr. Ehlers has found that Aß peptides cause a selective activation of endocytosis molecules with a simultaneous loss of glutamate receptors at hippocampal synapses. Using his preliminary data, Dr. Ehlers is working to define the underlying cellular mechanism of the Aß-dependent disturbance of endocytosis and to identify molecular signals that restore normal synapse function in the amyloid-exposed brain.
Grants
Related Grants
Alzheimer's Disease Research
Regulatory Mechanisms Underlying Endosomal Targeting of SORL1
Active Dates
January 01, 2025 - December 31, 2026
Principal Investigator
Olav Andersen, PhD
Regulatory Mechanisms Underlying Endosomal Targeting of SORL1
Active Dates
January 01, 2025 - December 31, 2026

Principal Investigator
Olav Andersen, PhD
Alzheimer's Disease Research
The Role of DYRK1A in Altered Microglia Biology in a Cellular Model of Alzheimer’s Disease in Down Syndrome
Active Dates
January 01, 2025 - December 31, 2027
Principal Investigator
Frances Wiseman, PhD
The Role of DYRK1A in Altered Microglia Biology in a Cellular Model of Alzheimer’s Disease in Down Syndrome
Active Dates
January 01, 2025 - December 31, 2027

Principal Investigator
Frances Wiseman, PhD
Alzheimer's Disease Research
Synergistic Effects of Biological Sex and Sleep Loss in an AD Mouse Model
Active Dates
January 01, 2025 - December 31, 2026
Principal Investigator
Mallar Chakravarty, PhD
Synergistic Effects of Biological Sex and Sleep Loss in an AD Mouse Model
Active Dates
January 01, 2025 - December 31, 2026
Principal Investigator
Mallar Chakravarty, PhD