Molecular Targets of Synaptic Dysfunction in AD
About the Research Project
Program
Award Type
Standard
Award Amount
$300,000
Active Dates
April 01, 2004 - March 31, 2006
Grant ID
A2004004
Summary
A significant amount of early memory deficit in Alzheimer’s disease (AD) is caused by abnormal communication between nerve cells in the hippocampus, a brain region dedicated to memory formation. Such communication occurs at excitatory synapses, specialized cell-cell contact sites where the neurotransmitter glutamate is released and detected. A prominent form of AD-associated synapse dysfunction is the impairment of synaptic plasticity by beta-amyloid (Aß), the protein fragment that accumulates in the brains of Alzheimer’s patients. A newly recognized mechanism for changing synaptic strength is the removal of neurotransmitter receptors that detect the neurotransmitter glutamate by a process called endocytosis. Dr. Ehlers has found that Aß peptides cause a selective activation of endocytosis molecules with a simultaneous loss of glutamate receptors at hippocampal synapses. Using his preliminary data, Dr. Ehlers is working to define the underlying cellular mechanism of the Aß-dependent disturbance of endocytosis and to identify molecular signals that restore normal synapse function in the amyloid-exposed brain.
Related Grants
Alzheimer's Disease Research
Mechanisms of Inhibitory Neuron Vulnerability to Alzheimer’s Disease
Active Dates
July 01, 2024 - June 30, 2026
Principal Investigator
Emiliano Zamponi, PhD
Current Organization
Columbia University
Mechanisms of Inhibitory Neuron Vulnerability to Alzheimer’s Disease
Active Dates
July 01, 2024 - June 30, 2026
Principal Investigator
Emiliano Zamponi, PhD
Current Organization
Columbia University
Alzheimer's Disease Research
Targeting Brain Cell Miscommunication to Restore Memory in Alzheimer’s Disease
Active Dates
July 01, 2024 - June 30, 2027
Principal Investigator
Amira Latif-Hernandez, PhD
Current Organization
Stanford University
Targeting Brain Cell Miscommunication to Restore Memory in Alzheimer’s Disease
Active Dates
July 01, 2024 - June 30, 2027
Principal Investigator
Amira Latif-Hernandez, PhD
Current Organization
Stanford University
Alzheimer's Disease Research
Progranulin as a Potential Therapeutic Target for Alzheimer's Disease
Active Dates
July 01, 2024 - June 30, 2027
Principal Investigator
Andrew Nguyen, PhD
Current Organization
Saint Louis University
Progranulin as a Potential Therapeutic Target for Alzheimer's Disease
Active Dates
July 01, 2024 - June 30, 2027
Principal Investigator
Andrew Nguyen, PhD
Current Organization
Saint Louis University