Identifying Therapeutic Targets and Biomarkers to Facilitate a Meaningful Therapy and a Pre-Symptomatic Disease Diagnostic

About the Research Project
Program
Award Type
Standard
Award Amount
$300,000
Active Dates
September 01, 2020 - August 31, 2024
Grant ID
A2020161S
Goals
Many genes are known to be involved in Alzheimer’s disease, but exactly how they are involved is unclear. We hope to identify DNA and RNA changes that drive Alzheimer’s disease development and progression.
Summary
Like many Alzheimer’s disease researchers, one of our long-term goals is to help develop a meaningful therapeutic to treat disease. What is not commonly emphasized, however, is the importance of developing pre-symptomatic diagnostic for Alzheimer’s disease (AD)—because once symptoms onset, it’s too late to provide the best treatment; the individual has already lost vital brain function affecting precious memories and other essential functions. As such, our second long-term goal is to develop a pre-symptomatic disease diagnostic. To accomplish our goals, we seek to identify specific DNA and RNA modifications that are directly driving Alzheimer’s disease because most genes involved in disease are only implicated through basic statistical associations. In other words, we still lack specific molecular mechanisms to target for treatment and diagnostics. Our aims are a focused approach to identify specific mechanisms involved in disease development and progression. Specifically, we are employing cutting-edge DNA and RNA sequencing approaches that will enable us to identify an entirely different class of DNA mutations, known as structural mutations, that are known to drive many neurodegenerative diseases. Structural DNA mutations are generally overlooked using standard sequencing approaches, but we have already identified potentially important mutations using long-range approaches. Likewise, these approaches are making it possible to understand top Alzheimer’s disease genes at an entirely new level. On average, the top Alzheimer’s disease genes code for approximately 12 different proteins. Historically, and for practical reasons, studies have been forced to treat all of these proteins for a given gene as a single entity, which is a major oversimplification of the underlying biology. We are now able to individually measure levels for these different protein-encoding RNA isoforms to determine which ones are actually involved in disease. The opportunities afforded by our BrightFocus award will make it possible to identify specific molecular mechanisms that we can target for both therapeutics and for a pre-symptomatic disease diagnostic.
Related Grants
Alzheimer's Disease Research
Neurostimulation to Improve Depression and Memory in Dementia
Active Dates
July 01, 2024 - June 30, 2027
Principal Investigator
Davide Cappon, PhD
Current Organization
Hebrew Rehabilitation Center
Neurostimulation to Improve Depression and Memory in Dementia
Active Dates
July 01, 2024 - June 30, 2027

Principal Investigator
Davide Cappon, PhD
Current Organization
Hebrew Rehabilitation Center
Alzheimer's Disease Research
Unfolding Alzheimer's Tau Therapies: Near- and Long-Term Approaches
Active Dates
July 01, 2023 - June 30, 2026
Principal Investigator
Paul Seidler, PhD
Current Organization
University of Southern California
Unfolding Alzheimer's Tau Therapies: Near- and Long-Term Approaches
Active Dates
July 01, 2023 - June 30, 2026

Principal Investigator
Paul Seidler, PhD
Current Organization
University of Southern California
Alzheimer's Disease Research
Modeling MRI Brain Aging in Autosomal Dominant Alzheimer's Disease
Active Dates
July 01, 2022 - June 30, 2025
Principal Investigator
Peter Millar, PhD
Current Organization
Washington University School of Medicine in St. Louis
Modeling MRI Brain Aging in Autosomal Dominant Alzheimer's Disease
Active Dates
July 01, 2022 - June 30, 2025

Principal Investigator
Peter Millar, PhD
Current Organization
Washington University School of Medicine in St. Louis