Alpha 7 Nicotinic Receptors and MAP Kinase in AD Models
About the Research Project
Program
Award Type
Standard
Award Amount
$299,920
Active Dates
April 01, 2004 - March 31, 2006
Grant ID
A2004001
Summary
One of the major advances in neurobiology in the last century was the formation of the general theory that changes in synaptic connections between neurons underlie information storage in the central nervous system (CNS). By studying the mechanisms of long-lasting synaptic plasticity in model systems, researchers can generate insights into the mechanisms of learning and memory. Dr. Sweatt’s past research indicates that four protein kinases play particularly prominent roles in synaptic plasticity and memory. These kinases are designated as PKA, PKC, CaMKII, and ERK MAPK. This project involves the role of the alpha7 nicotinic acetylcholine receptor in regulating these protein kinases. Alpha7 nicotinic acetylcholine receptors are abundant in the hippocampus and in cholinergic neurons from the basal forebrain, and these structures are particularly vulnerable to the ravages of Alzheimer’s disease. Dr. Sweatt is now testing the hypothesis that beta-amyloid peptide directly activates the alpha7 nicotinic acetylcholine receptor and leads to the disruption of memory-related biochemical processes.
Grants
Related Grants
Alzheimer's Disease Research
Partnership with Molecular Neurodegeneration Open Access Journal
Active Dates
July 01, 2010 - June 30, 2015
Principal Investigator
Guojun Bu, PhD
Partnership with Molecular Neurodegeneration Open Access Journal
Active Dates
July 01, 2010 - June 30, 2015

Principal Investigator
Guojun Bu, PhD
Alzheimer's Disease Research
Synergistic Effects of Biological Sex and Sleep Loss in an AD Mouse Model
Active Dates
January 01, 2025 - December 31, 2026
Principal Investigator
Mallar Chakravarty, PhD
Synergistic Effects of Biological Sex and Sleep Loss in an AD Mouse Model
Active Dates
January 01, 2025 - December 31, 2026
Principal Investigator
Mallar Chakravarty, PhD
Alzheimer's Disease Research
Regulatory Mechanisms Underlying Endosomal Targeting of SORL1
Active Dates
January 01, 2025 - December 31, 2026
Principal Investigator
Olav Andersen, PhD
Regulatory Mechanisms Underlying Endosomal Targeting of SORL1
Active Dates
January 01, 2025 - December 31, 2026

Principal Investigator
Olav Andersen, PhD