Expert

Stem Cells and Macular Degeneration

Scheie Eye Institute, University of Pennsylvania
Wednesday, November 30, 2016

There is great potential for stem cell transplantation in age-related macular degeneration (AMD), and this article explores the latest research.

Patients with age-related macular degeneration (AMD) often ask whether stem cell therapy might improve their vision now, or at some point in the future.

The concept is that stem cells are “undifferentiated,” meaning that they have the potential to develop into many different cell types, including retinal cells, which can then replace cells that have died due to AMD. The two major cell types that die in AMD are retinal pigment epithelial (RPE) cells and photoreceptors.

It is much easier to replace RPE cells than photoreceptors. RPE cells normally sit on a membrane in a single layer, where they support the photoreceptors. Without RPE cells, photoreceptors die. This is the sequence of events in at least some patients with the “geographic atrophy” form of advanced, dry AMD. Stem cells can be induced to become RPE cells relatively easily, and then injected into their proper location. The challenge is that often these cells form clumps rather than a single layer.

Last year, researchers published preliminary results from a small clinical trial of injected stem cell-derived RPE cells for AMD and the related disease, Stargardt’s. The results show evidence that these cells injected into a small area of the macula can survive for three months, the procedure was not associated with any adverse events, and there is a hint that the vision may have improved slightly. While these results represent a promising start, more clinical trials and fine-tuning of techniques are needed.

It is more difficult to transplant photoreceptors, however. While stem cells can be induced to form photoreceptors, it has harder to “convince” them to become photoreceptors than RPE cells. Also, after photoreceptors are transplanted into the retina, they must connect with other retinal neurons and form synapses in order to conduct their signals. While this normally occurs in the developing retina, it is much harder to make this happen in an adult retina. Experiments in mice suggest that it can be accomplished, but so far this happens mainly when the donor cells and recipient retinas are at early developmental stages. Combinations of RPE cells with photoreceptors can also be generated from stem cells, and could also be considered for transplantation.

In summary, there is much excitement about the potential for stem cell transplantation in AMD, and this approach has a reasonable chance of helping patients with wet AMD or advanced dry (geographic atrophy) AMD at some point in the future. In the meantime, studies in mice as well as additional human clinical trials will continue to pave the way.

Definitions

  • Retinal Pigmented Epithelium (RPE) - a layer of cells that protects and nourishes the retina, removes waste products, prevents new blood vessel growth into the retinal layer and absorbs light not absorbed by the photoreceptor cells; these actions prevent the scattering of the light and enhance clarity of vision.
  • Photoreceptors - the light sensing nerve cells (rods and cones) located in the retina.

The information provided here is a public service of the BrightFocus Foundation and should not in any way substitute for personalized advice of a qualified healthcare professional; it is not intended to constitute medical advice. Please consult your physician for personalized medical advice. BrightFocus Foundation does not endorse any medical product, therapy, or resources mentioned or listed in this article. All medications and supplements should only be taken under medical supervision. Also, although we make every effort to keep the medical information on our website updated, we cannot guarantee that the posted information reflects the most up-to-date research.

These articles do not imply an endorsement of BrightFocus by the author or their institution, nor do they imply an endorsement of the institution or author by BrightFocus.

Some of the content may be adapted from other sources, which will be clearly identified within the article.

More Like This

  • Illustration depicting medical imaging for macular degeneration
    Expert

    Retinal Imaging for Diagnosing and Treating AMD

    The past decade has witnessed a revolution in retinal imaging providing detailed views of retinal changes in people who have age-related macular degeneration (AMD). Learn about the various forms of retinal imaging and how they help eye doctors diagnose and treat AMD

    Wednesday, October 11, 2017
  • Graphic of a strand of DNA.
    Expert

    Update on Genetics and Age-Related Macular Degeneration

    Age-related macular degeneration (AMD) is caused by a number of genetic and environmental factors. People with an affected parent have approximately twice the risk of getting the disease than someone whose parents do not have AMD. Learn about the genes that increase the risk of AMD, and whether genetic testing is recommended.

    Thursday, September 28, 2017
  • Researcher using a pipette
    Expert

    The Immune System and Macular Degeneration

    There is strong evidence that inflammation plays a role in the development of age-related macular degeneration (AMD). Learn why our immune system and inflammation contribute to AMD and how exciting research may lead to new, promising treatments.

    Thursday, September 28, 2017

Don't miss out.
Receive research updates, inspiring stories, and expert advice
Keep me imformed about: *
Please select at least one.
You must select at least one disease category.
Please enter your first name.
Please enter your last name.