Tau-Induced Damage at Hippocampal Tripartite Synapses

About the Research Project
Program
Award Type
Standard
Award Amount
$300,000
Active Dates
July 01, 2018 - June 30, 2022
Grant ID
A2018816S
Co-Principal Investigator(s)
Russell Nicholls, PhD, Columbia University
Goals
The cognitive and behavioral symptoms that characterize Alzheimer’s disease (AD) are thought to result from impaired communication between neurons in the brain at connections called synapses. Toxic forms of a protein called tau play a central role in AD and other neurodegenerative conditions, and recent data show that tau can interfere with synapses in multiple ways. These observations greatly underscore efforts to treat AD by blocking the pathological actions of tau. The goal of this project is to better understand how tau interferes with synaptic function so that we can develop effective strategies to block the impairments it causes.
Summary
A combination of high tech electrophysiological and molecular biological techniques will permit the exploration of changes occurring both pre- and post-synaptically, as well as at the level of astrocytes that surround synapses following the elevation of tau protein.
Grants
Related Grants
Alzheimer's Disease Research
Regulatory Mechanisms Underlying Endosomal Targeting of SORL1
Active Dates
January 01, 2025 - December 31, 2026
Principal Investigator
Olav Andersen, PhD
Regulatory Mechanisms Underlying Endosomal Targeting of SORL1
Active Dates
January 01, 2025 - December 31, 2026

Principal Investigator
Olav Andersen, PhD
Alzheimer's Disease Research
The Role of DYRK1A in Altered Microglia Biology in a Cellular Model of Alzheimer’s Disease in Down Syndrome
Active Dates
January 01, 2025 - December 31, 2027
Principal Investigator
Frances Wiseman, PhD
The Role of DYRK1A in Altered Microglia Biology in a Cellular Model of Alzheimer’s Disease in Down Syndrome
Active Dates
January 01, 2025 - December 31, 2027

Principal Investigator
Frances Wiseman, PhD
Alzheimer's Disease Research
Synergistic Effects of Biological Sex and Sleep Loss in an AD Mouse Model
Active Dates
January 01, 2025 - December 31, 2026
Principal Investigator
Mallar Chakravarty, PhD
Synergistic Effects of Biological Sex and Sleep Loss in an AD Mouse Model
Active Dates
January 01, 2025 - December 31, 2026
Principal Investigator
Mallar Chakravarty, PhD