Targeting GD3S to Reduce Plaque and Improve Memory

Principal Investigator
Michael P. Mcdonald, PhD
The University of Tennessee Health Science Center
Memphis, TN, USA
About the Research Project
Program
Award Type
Pilot
Award Amount
$150,000
Active Dates
April 01, 2007 - March 31, 2009
Grant ID
A2007174
Goals
We propose to use siRNA to suppress GD3S expression in a mouse model of Alzheimer’s disease. Consistent with our previous results, we expect that this novel genetic therapy will significantly reduce plaque formation and completely block the memory deficits normally exhibited by these mice.
Summary
Alzheimer’s disease is characterized by the accumulation of plaques in the brain, widespread neurodegeneration, and cognitive decline. We have shown that by eliminating an enzyme called GD3S we are able to reduce plaque formation, block cell death, and prevent memory deficits in a mouse model of Alzheimer’s disease. This suggests that blocking GD3S may useful in treating Alzheimer’s disease. However, in these mice the mutation that blocked GD3S was made before birth, and the enzyme plays an important role in many processes that are important for normal brain development. Thus it’s important to test the therapy in adult mice, after they’ve gone through normal brain development. This is analogous to what a genetic therapy will be like for Alzheimer’s patients, i.e., the treatment begins in adulthood. A new technique, called siRNA, allows us to simply and efficiently suppress the expression of the GD3S gene in live mice. We propose to use siRNA to suppress GD3S expression in a mouse model of Alzheimer’s disease. Consistent with our previous results, we expect that this novel genetic therapy will significantly reduce plaque formation and completely block the memory deficits normally exhibited by these mice.
Grants
Related Grants
Alzheimer's Disease Research
Regulatory Mechanisms Underlying Endosomal Targeting of SORL1
Active Dates
January 01, 2025 - December 31, 2026
Principal Investigator
Olav Andersen, PhD
Regulatory Mechanisms Underlying Endosomal Targeting of SORL1
Active Dates
January 01, 2025 - December 31, 2026

Principal Investigator
Olav Andersen, PhD
Alzheimer's Disease Research
The Role of DYRK1A in Altered Microglia Biology in a Cellular Model of Alzheimer’s Disease in Down Syndrome
Active Dates
January 01, 2025 - December 31, 2027
Principal Investigator
Frances Wiseman, PhD
The Role of DYRK1A in Altered Microglia Biology in a Cellular Model of Alzheimer’s Disease in Down Syndrome
Active Dates
January 01, 2025 - December 31, 2027

Principal Investigator
Frances Wiseman, PhD
Alzheimer's Disease Research
Synergistic Effects of Biological Sex and Sleep Loss in an AD Mouse Model
Active Dates
January 01, 2025 - December 31, 2026
Principal Investigator
Mallar Chakravarty, PhD
Synergistic Effects of Biological Sex and Sleep Loss in an AD Mouse Model
Active Dates
January 01, 2025 - December 31, 2026
Principal Investigator
Mallar Chakravarty, PhD