Revealing Early Biomarkers in Alzheimer’s Disease

About the Research Project
Program
Award Type
Standard
Award Amount
$300,000
Active Dates
July 01, 2022 - June 30, 2025
Grant ID
A2022029S
Acknowledgement
Co-Principal Investigator(s)
Goals
Our goal is to identify molecular, synaptic, and physiological alterations to describe early changes in the hippocampus in Alzheimer’s disease and create a spatial map of these changes.
Summary
Aim #1 will identify changes at the RNA level of specific genes in cell types in the hippocampus. In aim #2 we will link RNA changes to changes at the protein level focusing on synaptic changes. In aim #3 we will link the molecular and synaptic changes to physiology using the common spatial map. These data will enable the construction of a novel model that explains the functional consequences of early molecular events in Alzheimer’s disease.
Unique and Innovative
Here, we will use a new spatial, super-resolved, and multiplexed approach, which allows probing hundreds of gene targets in situ with synaptic resolution. Our approach allows the correlation of RNA molecules, synapse morphology, and function to one another and to proximity to plaques. This unique analysis will be performed at the early stages of AD, allowing early identification of AD-associated biomarkers.
Foreseeable Benefits
We will use, first time in AD, a novel platform we developed, to detect molecular changes of hundreds of genes in intact brain tissues at early disease stages, and relate them to specific cell types, proximity to amyloid deposits, and sex differences. This work will answer long-standing and critical questions: What are the mechanisms that lead to a synaptic loss? Which cells are involved? Do amyloid plaques intensify it? Understanding these mechanisms will help develop early diagnostic and therapeutic tools that can prevent synaptic loss and hinder AD progression.
Grants
Related Grants
Alzheimer's Disease Research
Progranulin as a Potential Therapeutic Target for Alzheimer's Disease
Active Dates
July 01, 2024 - June 30, 2027
Principal Investigator
Andrew Nguyen, PhD
Progranulin as a Potential Therapeutic Target for Alzheimer's Disease
Active Dates
July 01, 2024 - June 30, 2027

Principal Investigator
Andrew Nguyen, PhD
Alzheimer's Disease Research
Does Alzheimer’s Disease Accelerate Brain Aging?
Active Dates
July 01, 2024 - June 30, 2027
Principal Investigator
María Llorens-Martín, PhD
Does Alzheimer’s Disease Accelerate Brain Aging?
Active Dates
July 01, 2024 - June 30, 2027

Principal Investigator
María Llorens-Martín, PhD
Alzheimer's Disease Research
Mechanisms of Inhibitory Neuron Vulnerability to Alzheimer’s Disease
Active Dates
July 01, 2024 - June 30, 2026
Principal Investigator
Emiliano Zamponi, PhD
Mechanisms of Inhibitory Neuron Vulnerability to Alzheimer’s Disease
Active Dates
July 01, 2024 - June 30, 2026

Principal Investigator
Emiliano Zamponi, PhD