Lipid Bilayer Reorganization by Amyloid-Beta Oligomers

About the Research Project
Program
Award Type
Pilot
Award Amount
$149,940
Active Dates
April 01, 2008 - March 31, 2010
Grant ID
A2008307
Goals
This team will use synthetic models of neuronal cell membranes, to study how ABeta interacts with these membranes. The results of these studies will be insight into the damaging effects of ABeta and how this effect varies with membrane lipid composition.
Summary
How do misfolded peptide aggregates interact with lipid membranes? More specifically, how do amyloid-Beta (ABeta) oligomers affect neuronal cell membranes? ABeta is a 40 or 42 amino acids long fragment of the amyloid precursor protein APP which has long been implicated t play a crucial role in the etiology of Alzheimer’s Disease (AD) . A progressively larger body of evidence has recently accrued that the toxic form of ABeta is a soluble aggregation of the protein, and that such ABeta ‘oligomers’ interact strongly with cell membranes. Using novel synthetic membrane models, we have developed suitable experimental tools to address the questions posed above in structural, functional and dynamic terms on the molecular level. In this ADR Pilot Grant award, we will to study the response of such synthetic membranes to ABeta oligomers as a function of membrane composition. We are particularly interested in membrane compositions that mimic the lipid characteristics of neuronal cell membranes in order to investigate whether ABeta oligomers interact with such membranes strongly. The proposed research may have implications for a molecular-scale understanding of the damage that ABeta oligomers inflict on neuronal membranes and may in the long run also help to devise synthetic strategies for the early detection of ABeta oligomers in patient samples. The specific aims of this research are to investigate the interaction of ABeta oligomers with synthetic lipid membranes of well-defined compositions and to correlate the structural, functional and dynamic response of such membranes to ABeta with the aggregation state of the peptide.
Grants
Related Grants
Alzheimer's Disease Research
Fingerprinting In Vivo and In Vitro Prion Strains
Active Dates
September 01, 2020 - November 30, 2022
Principal Investigator
Hyunjun Yang, PhD
Fingerprinting In Vivo and In Vitro Prion Strains
Active Dates
September 01, 2020 - November 30, 2022

Principal Investigator
Hyunjun Yang, PhD
Alzheimer's Disease Research
Partnership with Molecular Neurodegeneration Open Access Journal
Active Dates
July 01, 2010 - June 30, 2015
Principal Investigator
Guojun Bu, PhD
Partnership with Molecular Neurodegeneration Open Access Journal
Active Dates
July 01, 2010 - June 30, 2015

Principal Investigator
Guojun Bu, PhD
Alzheimer's Disease Research
Synergistic Effects of Biological Sex and Sleep Loss in an AD Mouse Model
Active Dates
January 01, 2025 - December 31, 2026
Principal Investigator
Mallar Chakravarty, PhD
Synergistic Effects of Biological Sex and Sleep Loss in an AD Mouse Model
Active Dates
January 01, 2025 - December 31, 2026
Principal Investigator
Mallar Chakravarty, PhD