Evaluating the Role of Immune Cells in the Brain and a Related Protein, TREM2, on Alzheimer’s Disease Pathology

Principal Investigator
Maud Gratuze, PhD
Washington University School of Medicine
St. Louis, MO, USA
About the Research Project
Program
Award Type
Postdoctoral Fellowship
Award Amount
$200,000
Active Dates
September 01, 2020 - August 31, 2022
Grant ID
A2020257F
Goals
Aggregation of the tau protein in the brain is a hallmark of Alzheimer’s disease (AD), and the propagation of aggregated tau protein is strongly associated with the degeneration and dementia. In addition, brain immune cells, known as microglia, play a crucial role in AD and the propagation of tau pathology in the brain. Indeed, mutations in TREM2, a protein found on microglia, are one of the strongest genetic risk factors for AD. Therefore, we will investigate if decreasing microglia or TREM2 levels in the brain can modulate tau propagation.
Summary
Because progression of tau pathology into the limbic and neocortex coincides with cognitive impairment in AD, it is essential to better understand how tau pathology seeds and spreads throughout the brain of AD patients. In this project, I propose to evaluate the impact of microglia and TREM2 on tau seeding and spreading by depleting microglia or deleting TREM2 in the brains of mouse models with or without amyloid pathology and to investigate the mechanisms underlying the effects of microglia or TREM2 removal on tau propagation. Taken together, these studies will help us to identify unique therapeutic strategies to modulate the propagation of tau pathology in the brain of AD patients by targeting microglia or TREM2.
Grants
Related Grants
Alzheimer's Disease Research
Partnership with Molecular Neurodegeneration Open Access Journal
Active Dates
July 01, 2010 - June 30, 2015
Principal Investigator
Guojun Bu, PhD
Partnership with Molecular Neurodegeneration Open Access Journal
Active Dates
July 01, 2010 - June 30, 2015

Principal Investigator
Guojun Bu, PhD
Alzheimer's Disease Research
Synergistic Effects of Biological Sex and Sleep Loss in an AD Mouse Model
Active Dates
January 01, 2025 - December 31, 2026
Principal Investigator
Mallar Chakravarty, PhD
Synergistic Effects of Biological Sex and Sleep Loss in an AD Mouse Model
Active Dates
January 01, 2025 - December 31, 2026
Principal Investigator
Mallar Chakravarty, PhD
Alzheimer's Disease Research
Regulatory Mechanisms Underlying Endosomal Targeting of SORL1
Active Dates
January 01, 2025 - December 31, 2026
Principal Investigator
Olav Andersen, PhD
Regulatory Mechanisms Underlying Endosomal Targeting of SORL1
Active Dates
January 01, 2025 - December 31, 2026

Principal Investigator
Olav Andersen, PhD