Disequilibrium of Tau Protein Phosphorylation and AD

Principal Investigator
Hemant Paudel, PhD
Lady Davis Institute for Medical Research
Montreal, Québec, Canada
About the Research Project
Program
Award Type
Standard
Award Amount
$200,000
Active Dates
April 01, 2002 - March 31, 2004
Grant ID
A2002038
Summary
In Alzheimer’s disease, neurofibrillary tangles (NTs) develop in nerve cells undergoing degeneration, and their distribution provides a reliable correlation to the degree of dementia. The molecular basis for the formation of NTs is not known. NTs contain paired helical filaments (PHFs) as the major fibrous component. The microtubule-associated protein tau is the major constituent of PHFs. It has been shown that tau abnormalities lead to neurodegeneration, microtubule disruption and dementia. This is thought to result from an imbalance in the phosphorylation of tau. The regulatory mechanisms that control tau phosphorylation and the determination of how this regulation fails in AD are not known. Dr. Paudel has recently identified a multiprotein complex in the brain that might be involved. He plans to characterize the proteins within this complex and determine their activities in tau phosphorylation with the goal of understanding the cascade of events that leads to abnormal tau phosphorylation, tau aggregation, microtubule disruption and neurodegeneration. Completion of this study will provide important information about the biochemical and cellular mechanisms of NT formation in the AD brain and help to design future treatment strategies to retard NT formation in the brains of AD patients.
Related Grants
Alzheimer's Disease Research
The Role of DYRK1A in Altered Microglia Biology in a Cellular Model of Alzheimer’s Disease in Down Syndrome
Active Dates
January 01, 2025 - December 31, 2027
Principal Investigator
Frances Wiseman, PhD
Current Organization
University College London (UK)
The Role of DYRK1A in Altered Microglia Biology in a Cellular Model of Alzheimer’s Disease in Down Syndrome
Active Dates
January 01, 2025 - December 31, 2027

Principal Investigator
Frances Wiseman, PhD
Current Organization
University College London (UK)
Alzheimer's Disease Research
Mechanisms of Inhibitory Neuron Vulnerability to Alzheimer’s Disease
Active Dates
July 01, 2024 - June 30, 2026
Principal Investigator
Emiliano Zamponi, PhD
Current Organization
Columbia University
Mechanisms of Inhibitory Neuron Vulnerability to Alzheimer’s Disease
Active Dates
July 01, 2024 - June 30, 2026

Principal Investigator
Emiliano Zamponi, PhD
Current Organization
Columbia University
Alzheimer's Disease Research
Shining a Light on How Early Tau-Related Brain Changes Affect Memory Loss
Active Dates
July 01, 2024 - June 30, 2026
Principal Investigator
Martin Dahl, PhD
Current Organization
Max Planck Institute for Human Development (Germany)
Shining a Light on How Early Tau-Related Brain Changes Affect Memory Loss
Active Dates
July 01, 2024 - June 30, 2026

Principal Investigator
Martin Dahl, PhD
Current Organization
Max Planck Institute for Human Development (Germany)