Caspase-Cleavage of Tau in Alzheimer's Disease
About the Research Project
Program
Award Type
Pilot
Award Amount
$131,140
Active Dates
April 01, 2007 - March 31, 2010
Grant ID
A2007316
Acknowledgement
Co-Principal Investigator(s)
Wayne Poon, PhD, University of California - Irvine
Goals
Direct, functional evidence for the involvement of caspases in driving AD pathology is currently lacking. The current proposal will test directly the role of caspases in AD by blocking caspase activation in an AD transgenic mouse model and examining whether such inhibition prevents the pathology associated with these animals.
Summary
Introduction: Recent studies have suggested that proteolytic cleavage of tau by caspases may be an important event linking beta-amyloid with neurofibrillary tangles in Alzheimer’s disease (AD). These studies suggest that caspase activation may play an important role in driving AD disease pathology and simply do not represent end-stage events associated with this disease. Hypothesis: Direct, functional evidence for the involvement of caspases in driving AD pathology is currently lacking. The current proposal will test directly the role of caspases in AD by blocking caspase activation in an AD transgenic mouse model and examining whether such inhibition prevents the pathology associated with these animals. Specific Aim 1: Crossing 3xTg-AD mice with Bcl-2 OE Tg mice will prevent the caspase cleavage of tau Specific Aim 2: Mice resulting from crossing 3xTg-AD mice with Bcl-2 OE Tg mice will exhibit fewer tangle alterations. Long-term goals: Direct evidence indicating a causative role for caspases in AD may stimulate the development of caspase inhibitors for their potential in treating this disease. In addition, results from this pilot study will provide the necessary feasibility and data for the development of a more comprehensive proposal examining all pathological aspects of these novel AD mice.
Related Grants
Alzheimer's Disease Research
The Role of JADE1 in Tauopathy
Active Dates
July 01, 2025 - June 30, 2027
Principal Investigator
Marcos Schaan Profes, PhD
Current Organization
Icahn School of Medicine at Mount Sinai
The Role of JADE1 in Tauopathy
Active Dates
July 01, 2025 - June 30, 2027
Principal Investigator
Marcos Schaan Profes, PhD
Current Organization
Icahn School of Medicine at Mount Sinai
Alzheimer's Disease Research
Harnessing the Protein CHIP/STUB1 to Reduce Alzheimer's Brain Pathology
Active Dates
July 01, 2025 - June 30, 2028
Principal Investigator
Todd Cohen, PhD
Current Organization
The University of North Carolina at Chapel Hill
Harnessing the Protein CHIP/STUB1 to Reduce Alzheimer's Brain Pathology
Active Dates
July 01, 2025 - June 30, 2028
Principal Investigator
Todd Cohen, PhD
Current Organization
The University of North Carolina at Chapel Hill
Alzheimer's Disease Research
Assessing the Impact of Blood Brain Barrier Dysfunction on CSF Tau Levels in Alzheimer’s Disease
Active Dates
July 01, 2024 - June 30, 2026
Principal Investigator
Joshna Gadhavi, PhD
Current Organization
Emory University
Assessing the Impact of Blood Brain Barrier Dysfunction on CSF Tau Levels in Alzheimer’s Disease
Active Dates
July 01, 2024 - June 30, 2026
Principal Investigator
Joshna Gadhavi, PhD
Current Organization
Emory University