Brain BDNF Delivery for Targeting Alzheimer's Disease
About the Research Project
Program
Award Type
Standard
Award Amount
$100,000
Active Dates
April 01, 2003 - March 31, 2005
Grant ID
A2003238
Summary
Alzheimer’s disease (AD) is characterized by the progressive loss of neurons. Today there is virtually no promising treatment for AD. The primary reason for the lack of effective AD treatment lies in the fact that the brain represents the most difficult territory for pharmacological intervention. The brain possesses the least permeable, so-called blood-brain barrier (BBB), which can block the passage of water-based compounds and virtually all drugs with a high molecular weight. Therefore, despite the recent discovery that brain-derived neurotrophic factors (BDNF) could promote neuronal survival, stimulate their growth, and promote the development of nerve fibers in vitro, they nevertheless could not be applied to AD treatment, because of a lack of a means to deliver these growth factors into the brain. Therefore, the need for an effective delivery system that could deliver a therapeutic level of drugs to the brain for the treatment of AD is imperative. In this project, the researchers are using a clinically approved, biocompatible and biodegradable magnetic resonance imaging agent, the superparamagnetic iron oxide nanoparticles (MION), as a drug carrier. A magnetic field is being used as a tool for specific brain targeting, and the unmatched cell-translocation ability of TAT (the protein transduction domain of the HIV virus) is being used as the means to overcome the BBB. It is hoped that this technique will allow doctors to deliver therapeutic concentrations of BDNF directly into the brain.
Related Grants
Alzheimer's Disease Research
Mechanisms of Inhibitory Neuron Vulnerability to Alzheimer’s Disease
Active Dates
July 01, 2024 - June 30, 2026
Principal Investigator
Emiliano Zamponi, PhD
Current Organization
Columbia University
Mechanisms of Inhibitory Neuron Vulnerability to Alzheimer’s Disease
Active Dates
July 01, 2024 - June 30, 2026
Principal Investigator
Emiliano Zamponi, PhD
Current Organization
Columbia University
Alzheimer's Disease Research
Targeting Brain Cell Miscommunication to Restore Memory in Alzheimer’s Disease
Active Dates
July 01, 2024 - June 30, 2027
Principal Investigator
Amira Latif-Hernandez, PhD
Current Organization
Stanford University
Targeting Brain Cell Miscommunication to Restore Memory in Alzheimer’s Disease
Active Dates
July 01, 2024 - June 30, 2027
Principal Investigator
Amira Latif-Hernandez, PhD
Current Organization
Stanford University
Alzheimer's Disease Research
Progranulin as a Potential Therapeutic Target for Alzheimer's Disease
Active Dates
July 01, 2024 - June 30, 2027
Principal Investigator
Andrew Nguyen, PhD
Current Organization
Saint Louis University
Progranulin as a Potential Therapeutic Target for Alzheimer's Disease
Active Dates
July 01, 2024 - June 30, 2027
Principal Investigator
Andrew Nguyen, PhD
Current Organization
Saint Louis University