Redox Sulfhydryl Modifications as a Glaucoma Biomarker

Principal Investigator
Leonard Levin, MD, PhD, FARVO
University of Wisconsin-Madison
Madison, WI, USA
About the Research Project
Program
Award Type
Standard
Award Amount
$100,000
Active Dates
July 01, 2012 - June 30, 2014
Grant ID
G2012015
Goals
The irreversible loss of vision in glaucoma is caused by damage to the optic nerve and the death of nerve cells, but the details of how the damage causes the death is still not known. Dr. Levin and colleagues believe that there are one or more pivotal signals that are critical to this pathway, based on how they can be blocked by new drugs called phosphine-borane complexes. Identifying these pivotal signals could help with early detection of glaucoma, before it causes significant visual loss; could help in monitoring the response to therapy; and even help to design new and better therapies for the disease.
Summary
Dr. Levin and colleagues are trying to pin down exactly how the eye gets disconnected from the brain in glaucoma, with the goal of preventing the disconnection from happening.
Fortunately, the researchers have some clues as to what is going on. Levin and colleagues have tested unique drugs that block the disconnection process. It turns out that those drugs work by separating molecules that were abnormally linked together. If the molecules are unlinked, then the eye stays connected to the brain, and vision is preserved.
But that’s not the whole story. The problem is that the abnormally linked molecules have not yet been identified. The researchers plan to use sophisticated techniques to identify those molecules, check that they are indeed abnormally linked together in glaucoma, and confirm that the new drugs separate the links and maintain the connection of the eye to the brain.
This project is novel because it focuses on the abnormal linkage of a key molecule as being critical for disconnecting the eye from the brain in glaucoma. It also will help in further developing newer and innovative unlinking drugs, which might someday become useful treatments for glaucoma. If the project is successful, and depending on the identity and accessibility of the abnormally linked molecules, these results may lead to ways of detecting glaucoma at its earliest stages. A test for an increase in these abnormally linked molecules may also help to tell whether a patient is getting worse, so that new interventions can be attempted before their vision is lost.
Related Grants
National Glaucoma Research
Pressure-Induced Axon Damage and Its Link to Glaucoma-Related Vision Loss
Active Dates
July 01, 2024 - June 30, 2026
Principal Investigator
Bingrui Wang, PhD
Current Organization
University of Pittsburgh
Pressure-Induced Axon Damage and Its Link to Glaucoma-Related Vision Loss
Active Dates
July 01, 2024 - June 30, 2026

Principal Investigator
Bingrui Wang, PhD
Current Organization
University of Pittsburgh
National Glaucoma Research
Why Certain Retina Ganglion Cells Stay Strong in Glaucoma
Active Dates
July 01, 2024 - June 30, 2026
Principal Investigator
Mengya Zhao, PhD
Current Organization
University of California, San Francisco
Why Certain Retina Ganglion Cells Stay Strong in Glaucoma
Active Dates
July 01, 2024 - June 30, 2026

Principal Investigator
Mengya Zhao, PhD
Current Organization
University of California, San Francisco
National Glaucoma Research
How the Microenvironment Affects Schlemm’s Canal Cell Behavior
Active Dates
July 01, 2024 - June 30, 2026
Principal Investigator
Samuel Herberg, PhD
Current Organization
SUNY Upstate Medical University
How the Microenvironment Affects Schlemm’s Canal Cell Behavior
Active Dates
July 01, 2024 - June 30, 2026

Principal Investigator
Samuel Herberg, PhD
Current Organization
SUNY Upstate Medical University