SOCS3 and Optic Nerve Regeneration in Zebrafish
About the Research Project
Program
Award Type
Standard
Award Amount
$90,000
Active Dates
April 01, 2006 - March 31, 2008
Grant ID
G2006025
Acknowledgement
Summary
Glaucoma often leads to blindness due to optic nerve damage and retinal ganglion cell death. Optic nerve regeneration may restore vision in patients suffering from glaucoma. Unfortunately the damaged mammalian optic nerve does not readily regenerate. Interestingly, fish regenerate their optic nerve following damage and therefore provide an ideal system for studying the mechanisms underlying successful optic nerve regeneration. In a recent screen for genes that might mediate successful optic nerve regeneration in zebrafish, Dr. Goldman has identified suppressor of cytokine signaling 3 (SOCS3), which is highly induced in retinal ganglion cells that are regenerating their optic axons. SOCS3 is a multifunctional SOCS protein that not only modulates the immune response, but can also influence a number of signal transduction cascades that impact cell survival and axon outgrowth. In this grant application he proposes to test whether SOCS3 is essential for successful optic nerve regeneration. This will be accomplished by knocking down the expression of SOCS3 in adult retinal ganglion cells whose optic axons have been lesioned and assaying cell survival and optic axon regeneration in vivo.
Related Grants
National Glaucoma Research
Role of a Key Gene, Angptl7, in Steroid-Induced Glaucoma
Active Dates
July 01, 2025 - June 30, 2027
Principal Investigator
Dan Stamer, PhD
Current Organization
Duke University School of Medicine
Role of a Key Gene, Angptl7, in Steroid-Induced Glaucoma
Active Dates
July 01, 2025 - June 30, 2027
Principal Investigator
Dan Stamer, PhD
Current Organization
Duke University School of Medicine
National Glaucoma Research
Enhancing Access to Glaucoma Care Using Artificial Intelligence
Active Dates
July 01, 2025 - June 30, 2027
Principal Investigator
Benjamin Xu, MD, PhD
Current Organization
University of Southern California
Enhancing Access to Glaucoma Care Using Artificial Intelligence
Active Dates
July 01, 2025 - June 30, 2027
Principal Investigator
Benjamin Xu, MD, PhD
Current Organization
University of Southern California
National Glaucoma Research
Assessment of Vascular Resistance in Glaucoma
Active Dates
July 01, 2025 - June 30, 2027
Principal Investigator
Brad Fortune, OD, PhD
Current Organization
Legacy Devers Eye Institute
Assessment of Vascular Resistance in Glaucoma
Active Dates
July 01, 2025 - June 30, 2027
Principal Investigator
Brad Fortune, OD, PhD
Current Organization
Legacy Devers Eye Institute