Bioengineering Studies of Transport Across Bruch's Membrane
About the Research Project
Program
Award Type
Standard
Award Amount
$48,996
Active Dates
April 01, 2002 - March 31, 2003
Grant ID
M2002044
Summary
Clinical lesions of early age-related maculopathy (ARM) involve Bruch’s membrane, a thin tissue layer between the small blood vessels in the choroid and the retinal pigment epithelium (RPE). It has been suggested that a decreased transport capacity of Bruch’s membrane, perhaps due to lipid accumulation, may be a critical early event in the pathogenesis of ARM. The decreased porousness of Bruch’s membrane may lead to RPE detachment. This proposal seeks to understand the structural changes in the extracellular matrix of Bruch’s membrane that accompany aging, and that could alter transport across the membrane. Dr. Johnson is using quick-freeze/deep-etch (QFDE) technology that will provide insights into the transport capabilities of Bruch’s membrane. QFDE preserves the extracellular matrix and allows structures to be visualized that are not seen in conventional transmission electron microscopy. Mathematical modeling is then applied to the images of Bruch’s membrane from QFDE analysis to evaluate the transport capabilities of Bruch’s membrane and to evaluate the importance of lipids in altering the transport. In this study, Dr. Johnson examines post-mortem, normal donor’s eyes over seven decades of life. The results from this experiment will establish a baseline of data for normal tissue, and Dr. Johnson’s future work will use diseased eyes. It is hoped that a better understanding of the pathophysiology of the early stages of ARM may help to guide the development of better treatments for the disease.
Grantee institution at the time of this grant: Northwestern University
Related Grants
Macular Degeneration Research
Exosomes and Autophagy: Suspicious Partners in Drusen Biogenesis and AMD
Active Dates
July 01, 2024 - June 30, 2027
Principal Investigator
Miguel Flores Bellver, PhD
Current Organization
University of Colorado Anschutz Medical Campus
Exosomes and Autophagy: Suspicious Partners in Drusen Biogenesis and AMD
Active Dates
July 01, 2024 - June 30, 2027

Principal Investigator
Miguel Flores Bellver, PhD
Current Organization
University of Colorado Anschutz Medical Campus
Macular Degeneration Research
Innovative Night Vision Tests for Age-Related Macular Degeneration
Active Dates
July 01, 2024 - June 30, 2027
Principal Investigator
Maximilian Pfau, MD
Current Organization
Institute of Molecular and Clinical Ophthalmology Basel (Switzerland)
Innovative Night Vision Tests for Age-Related Macular Degeneration
Active Dates
July 01, 2024 - June 30, 2027

Principal Investigator
Maximilian Pfau, MD
Current Organization
Institute of Molecular and Clinical Ophthalmology Basel (Switzerland)
Macular Degeneration Research
The Generation of Cone Photoreceptor Outer Segments
Active Dates
July 01, 2024 - June 30, 2027
Principal Investigator
Heike Kroeger, PhD
Current Organization
University of Georgia
The Generation of Cone Photoreceptor Outer Segments
Active Dates
July 01, 2024 - June 30, 2027

Principal Investigator
Heike Kroeger, PhD
Current Organization
University of Georgia