Text Size Normal Text Sizing Button Medium Text Sizing Button Large Text Sizing Button Text Contrast Normal Contrast Button Reverse Contrast Button Switch to Spanish Language Press Room Contact Us Sitemap Sign In Register
Link to Homepage About BrightFocus
BrightFocus
Donate Now Get Involved  
Alzheimer's Disease Research Macular Degeneration Research National Glaucoma Research


Sign up for Email Notifications
If you would like to be notified when funding or meeting opportunities are announced please click on the link below.

Sign up for new announcements.

Please add ResearchGrants@BrightFocus.org to your institution’s white list to insure that the notification is not blocked by your organization’s SPAM filters.

This email list is not sold or distributed, and serves only as an annual reminder of the availability of research support through the BrightFocus Foundation (www.brightfocus.org). Please follow instructions on the notification emails for removal requests.

 
 
BrightFocus Research Grants Funding
Grant Funding for Alzheimer's Research
Grant Funding for Macular Degeneration Research
Grant Funding for Glaucoma Research
 

 

Alzheimer's Disease Research
Current Award

Dr. Hongmei Li

Hongmei Li, Ph.D.

Baylor College of Medicine
Houston, TX

Title: Understanding the Role of Cerebral Vasculature AD Pathology Using a Knock-in Mouse Model with CAA
Non-Technical Title: Understanding the Causal Link Between Brain Blood Flow Reduction and Alzheimer's Disease and Exploring a Novel Nano-Drug Treatment

Mentor:
Hui Zheng, Ph.D.
Baylor College of Medicine

Duration: July 1, 2013 - June 30, 2015
Award Type: Research Fellowship
Award Amount: $100,000

Summary:

Dr. Li will study how the reduction of brain blood flow during aging contributes to the increasing risk of getting Alzheimer's disease (AD). Her goal is to evaluate a series of molecules that might be responsible for this event, and explore a promising new nano-drug that could be used to prevent and treat the disease.

Details:

The first aim of is to identify whether abnormal changes in cerebral (brain) blood flow can aggravate and promote AD. Surgical procedures on the left carotid artery (one of the two large vessels that pass by the voice box in the neck) can differentially change the blood flow on the left and right side of the brain in the mouse model of AD. This provides a tool to study how abnormal blood flow in the brain affects amyloid formation and beta-amyloid (Abeta) clearance. Next, Dr. Li will search for treatments that can protect blood vessels and investigate whether they can prevent, halt, or reverse the progress of AD in an age-dependent fashion in the mouse model.

Dr. Li has already engineered the novel AD mouse model of Familiar AD, where the mice have mutations in their APP and PS1 genes, and express a human form of Abeta. This mouse model is more similar to the true nature of the human disease, and thus offers a distinct advantage for mechanistic studies as compared to other mouse models. These mice exhibit age-dependent symptoms, including reduced brain blood flow, prominent Abeta deposit around blood vessels (a process called cerebral amyloid angiopathy, or CAA) and Abeta brain plaques, as well as cognitive deficits, which reflect many of the key symptoms of AD patients.

Upon completion of these studies, Dr. Li is hoping to gain more insights on how the health of blood vessels and the resulting changes in the cerebral blood flow influences the development and progression of AD. Furthermore, since the mouse model is more disease relevant and suitable for mechanistic studies, she is hoping that successful therapies identified with these mice will not only provide a better understanding of the disease, but also can lend ideas to future human clinical trials.

Investigator Biography:

Dr. Li is a post-doctoral associate in Dr. Hui Zheng’s lab of Huffington Center on Aging, Baylor College of Medicine. She completed her doctoral studies under Dr. Thomas Südhof’s guidance at University of Texas Southwestern Medical Center. Her work has been focusing on studying AD pathogenesis using clinic-relevant knock-in mice models.

::

]]