Text Size Normal Text Sizing Button Medium Text Sizing Button Large Text Sizing Button Text Contrast Normal Contrast Button Reverse Contrast Button Switch to Spanish Language Press Room Contact Us Sitemap Sign In Register
Link to Homepage About BrightFocus
BrightFocus
Donate Now Get Involved  
Alzheimer's Disease Research Macular Degeneration Research National Glaucoma Research


Sign up for Email Notifications
If you would like to be notified when funding or meeting opportunities are announced please click on the link below.

Sign up for new announcements.

This email list is not sold or distributed, and serves only as an annual reminder of the availability of research support through the BrightFocus Foundation (www.brightfocus.org). Please follow instructions on the notification emails for removal requests.

 
 
BrightFocus Research Grants Funding
Grant Funding for Alzheimer's Research
Grant Funding for Macular Degeneration Research
Grant Funding for Glaucoma Research
 

 

National Glaucoma Research
Completed Award

Photo Pending

Daniel Goldman, Ph.D.

Regents of the University of Michigan
Ann Arbor, MI

Title: SOCS3 and Optic Nerve Regeneration in Zebrafish
Non-Technical Title:

Acknowledgements: Recipient of the Thomas R. Lee award for National Glaucoma Research
Duration: April 1, 2006 - March 31, 2008
Award Type: Standard
Award Amount: $90,000

Details:


Glaucoma often leads to blindness due to optic nerve damage and retinal ganglion cell death. Optic nerve regeneration may restore vision in patients suffering from glaucoma. Unfortunately the damaged mammalian optic nerve does not readily regenerate. Interestingly, fish regenerate their optic nerve following damage and therefore provide an ideal system for studying the mechanisms underlying successful optic nerve regeneration. In a recent screen for genes that might mediate successful optic nerve regeneration in zebrafish, Dr. Goldman has identified suppressor of cytokine signaling 3 (SOCS3), which is highly induced in retinal ganglion cells that are regenerating their optic axons. SOCS3 is a multifunctional SOCS protein that not only modulates the immune response, but can also influence a number of signal transduction cascades that impact cell survival and axon outgrowth. In this grant application he proposes to test whether SOCS3 is essential for successful optic nerve regeneration. This will be accomplished by knocking down the expression of SOCS3 in adult retinal ganglion cells whose optic axons have been lesioned and assaying cell survival and optic axon regeneration in vivo.

Publications:

Veldman, M. B., Bemben, M. A., Thompson, R. C. and Goldman, D. Gene expression analysis of zebrafish retinal ganglion cells during optic nerve regeneration identifies KLF6a and KLF7a as important regulators of axon regeneration. Developmental Biology, 2007; 312:596-612. PubMed Icon Google Scholar Icon