Text Size Normal Text Sizing Button Medium Text Sizing Button Large Text Sizing Button Text Contrast Normal Contrast Button Reverse Contrast Button Switch to Spanish Language Press Room Contact Us Sitemap Sign In Register
Link to Homepage About BrightFocus
BrightFocus
Donate Now Get Involved  
Alzheimer's Disease Research Macular Degeneration Research National Glaucoma Research


Sign up for Email Notifications
If you would like to be notified when funding or meeting opportunities are announced please click on the link below.

Sign up for new announcements.

This email list is not sold or distributed, and serves only as an annual reminder of the availability of research support through the BrightFocus Foundation (www.brightfocus.org). Please follow instructions on the notification emails for removal requests.

 
 
BrightFocus Research Grants Funding
Grant Funding for Alzheimer's Research
Grant Funding for Macular Degeneration Research
Grant Funding for Glaucoma Research
 

 

Alzheimer's Disease Research
Current Award

Dr. John R. Cirrito

John R. Cirrito, Ph.D.

Washington University
St. Louis, MO, United States

Title: Endocytic Trafficking in Synaptic Amyloid-Beta Generation
Non-Technical Title: Endocytic Regulation of Synaptic Amyloid-Beta Generation in Alzheimer's Disease Models

Co-PI(s):
Jin-Moo Lee, M.D., Ph.D.
Washington University

Duration: July 1, 2012 - June 30, 2015
Award Type: Standard
Award Amount: $300,000

Summary:

Amyloid-beta peptide aggregation and accumulation appears to be the initial step that sets off a cascade of factors that lead to Alzheimer's disease (AD). Two proteins, PICALM and Bin1, have recently been identified in genetic studies as risk factors for AD. Drs. John Cirrito, Jin-Moo Lee, and colleagues will determine the cellular mechanisms by which these proteins act and interact to mediate amyloid-beta generation in living mice.

Details:

Summary: This proposal will determine the cellular mechanisms by which two proteins, recently identified as risk factors for developing late-onset Alzheimer's disease (AD), contribute to amyloid-beta generation and accumulation in animal models of the disease.

General background: Alzheimer's disease is caused by the accumulation of amyloid-beta (Abeta) within the areas between cells. Although amyloid precursor protein (APP) cleavage and Abeta generation have been well studied, little is known about cellular mechanisms and molecules involved in Abeta generation. Dr. John Cirrito's group has focused on activity at the synapses, a junction between neurons where communication between cells occurs. Cirrito has shown that a process by which cells communicate regulates Abeta levels in the brains of mice. Evidence suggests a similar process occurs in human brain as well. Recent genetic studies have found difference in genes for several proteins that are necessary for this activity. PICALM and Bin1 are significantly associated with late-onset AD, the most common form of AD, and are involved in synaptic activity. Preliminary studies from the Cirrito and Lee laboratories demonstrate that these proteins directly impact Abeta generation. Given their function and subcellular localization, Cirrito and his collaborators have proposed that these “endocytic adapter proteins” are specifically necessary for Abeta generation at synapses.

Drs. John Cirrito, Jin-Moo Lee, and colleagues will use a unique in vivo microdialysis technique developed by our group to determine how these proteins alter Abeta metabolism in living mice in real-time. They will also determine how PICALM alters individual amyloid plaque formation and growth over time in mouse models of AD.

Given the role of PICALM and Bin1 as risk factors for AD, this study is designed to shed light on novel cellular mechanisms leading to AD pathogenesis. Understanding the cellular mechanisms specific to Abeta generation will provide a more targeted approach to developing drugs that lower Abeta levels.

Investigator Biography:

Dr. John Cirrito is an Assistant Professor of Neurology at Washington University in St. Louis, Missouri. He received a Bachelor's degree in Psychology at Boston College and a Ph.D. in Neuroscience from Washington University in St. Louis, MO. His research focuses on metabolic pathways related to amyloid-beta, the protein that accumulates in plaques and initiates Alzheimer's disease. His group pioneered an in vivo microdialysis technique to measure amyloid-beta levels in real time within the brains of living mice. Much of his recent work focuses on the role of brain activity in generation of amyloid-beta and the cellular processes underlying that phenomenon. In addition to the BrightFocus award, Cirrito is funded by the National Institutes of Health. He also directs an In Vivo Microdialysis Core Facility that enables academic and pharmaceutical groups to test the effect of novel therapies on amyloid-beta metabolism in vivo.