Text Size Normal Text Sizing Button Medium Text Sizing Button Large Text Sizing Button Text Contrast Normal Contrast Button Reverse Contrast Button Switch to Spanish Language Press Room Contact Us Sitemap Sign In Register
Link to Homepage About BrightFocus
Donate Now Get Involved  
Alzheimer's Disease Research Macular Degeneration Research National Glaucoma Research

Sign up for Email Notifications
If you would like to be notified when funding or meeting opportunities are announced please click on the link below.

Sign up for new announcements.

Please add ResearchGrants@BrightFocus.org to your institution’s white list to insure that the notification is not blocked by your organization’s SPAM filters.

This email list is not sold or distributed, and serves only as an annual reminder of the availability of research support through the BrightFocus Foundation (www.brightfocus.org). Please follow instructions on the notification emails for removal requests.

BrightFocus Research Grants Funding
Grant Funding for Alzheimer's Research
Grant Funding for Macular Degeneration Research
Grant Funding for Glaucoma Research


National Glaucoma Research
Completed Award

Dr. Chris Lee

Wing (Chris) Lee, Ph.D.

Mayo Clinic Jacksonville
Jacksonville, FL, United States

Title: Development of a Novel Therapeutic for Inherited Glaucoma
Non-Technical Title: Development of a New Medicine for Inherited Glaucoma

Duration: July 1, 2012 - June 30, 2014
Award Type: Standard
Award Amount: $100,000


The study proposes to develop a new type of medicine for a common form of glaucoma related to mutations in a gene called MYOC. Some inherited mutations can change the structure and property of myocilin protein, which can lead to toxicity and dysfunction of the eye cells responsible for regulating eye pressure. Dr. Wing Lee and colleagues will attempt to identify drug-like chemical compounds that can bind to and stabilize the structure of the mutated myocilin, which subsequently may delay the onset of the disease or slow down disease progression by correcting abnormal changes at molecular level.


Primary open-angle glaucoma (POAG) is the most common form of glaucoma. While the mechanisms that cause POAG are not completely understood, patients with POAG normally have increased eye pressure due to insufficient drainage of aqueous humor, the biological fluid found at the front of the eyeball. Advances in genetic research have discovered that some inherited mutations in a gene called MYOC can eventually cause POAG. An eye structure called the trabecular meshwork is important for controlling eye pressure because it facilitates the drainage of aqueous humor. Studies have shown that some of the inherited mutations can cause myocilin to become "misfolded" into an aggregated structure that can damage the trabecular meshwork cells, leading to increased eye pressure.

A new class of therapeutic agents called pharmacological chaperones has recently emerged to treat protein misfolding disorders, which are diseases caused by the presence or accumulation of misfolded proteins. Pharmacological chaperones are chemical compounds that can correct the structure or inhibit the aggregation of the misfolded proteins by entering the cells and binding to it. Hence, the disease onset or progression may be delayed. In this project, Dr. Wing Lee and colleagues will identify pharmacological chaperones that specifically inhibit aggregation of mutant myocilin proteins, which could lead to a new type of medicine for POAG.

To identify chemical compounds that can bind to myocilin carrying a disease-causing mutation Y437H, Lee and colleagues will make use of a new screening system called the Corning EPIC®, which will allow them to measure binding between compounds and Y437H mutant myocilin proteins. A collection of 10,000 compounds will be screened with the EPIC® to identify the myocilin "binders." In addition, the researchers will test the binding candidates in trabecular meshwork cell cultures that have POAG-related symptoms caused by the Y437H myocilin mutant proteins. Only the binders that can improve the abnormal symptoms of the cells will be selected as potential pharmacological chaperones for future studies. If successful, this approach could open up a new direction of therapeutics for POAG and other protein misfolding disorders.

Investigator Biography:

Dr. Lee is an Assistant Professor of Neuroscience at the Mayo Clinic in Jacksonville, Florida. His work focuses on translational research related to protein misfolding diseases. Given that the aggregation of misfolded protein is a common cause of many diseases, including an inherited form of glaucoma, Lee has developed a new method to identify small molecules that can inhibit the aggregation process specific to different misfolded protein. Identification of specific aggregation inhibitors will not only increase our understanding of the disease mechanisms, it may also be used to develop new medicines to treat diseases such as primary open-angle glaucoma caused by myocilin gene mutations.