Searching The Link Between Alzheimer's Disease And Increased Risk Of Glaucoma

Peter P De Deyn, MD, PhD
Institute Born-Bunge (Antwerp, Belgium)
Year Awarded:
Grant Duration:
July 1, 2012 to June 30, 2014
Award Amount:
Grant Reference ID:
Award Type:
Award Region:

Co-principal Investigators

Debby P Van Dam, MSc, PhD
Institute Born-Bunge

Cerebrospinal Fluid Pressure At The Link Between Glaucoma And Alzheimer's Disease


Alzheimer's disease patients may be at a high risk of developing glaucoma. Drs. De Deyn, Van Dam, and colleagues are studying the underlying disease mechanisms responsible for this higher risk, both in patients and in mice engineered to have Alzheimer's disease (AD). These investigators hypothesize that reduced pressure in the liquid that surrounds the brain and spine, called cerebrospinal fluid, may be a major factor in this process.


Drs. De Deyn, Van Dam, and colleagues will study the disease mechanisms underlying the link between Alzheimer's disease and increased risk of glaucoma, both in patients and in a mouse model. They propose that reduced cerebrospinal fluid (CSF) pressure and a high eye pressure (called a trans-lamina cribrosa pressure gradient) in the eye play an important role in the development of glaucoma in Alzheimer's disease patients.

These researchers will also evaluate whether brain shrinkage, typical for Alzheimer's disease, could be the cause of the reduced CSF pressure. In parallel, they will determine whether mice engineered to have Alzheimer's disease also have glaucoma, and, if so, will determine the underlying disease mechanisms.

This is the first clinical study set up to look at the link between Alzheimer's disease and glaucoma. The study of animals with Alzheimer's disease gives the opportunity to more easily study disease mechanisms at various stages of the disease.

If confirmed, these hypotheses could have remarkable implications in clinical practice. Careful attention by the clinician should be given to the potential for glaucoma in AD patients. Moreover, measurement of CSF pressure could be a monitoring tool in AD patients. Further research could raise some interesting possibilities for therapy. A randomized clinical trial could be recommended to test whether one could prevent the development of glaucoma in AD by manipulating CSF pressure. The use of a valid mouse model for AD would also allow for focused translational research and further insight into underlying pathophysiological mechanisms.

About the Researcher

Prof. Dr. Peter Paul De Deyn is a neuropsychiatrist specializing in preclinical and clinical studies of neurodegenerative disease, including Alzheimer's disease and related disorders. He has authored or co-authored more than 500 peer-reviewed papers and edited a series of academic volumes in these fields. He is editor-in-chief of Clinical Neurology and Neurosurgery. He has headed the Laboratory of Neurochemistry and Behaviour at the Institute Born-Bunge, University of Antwerp, Belgium since 1989. Since 2005, he has also been the scientific director of this multidisciplinary research institute, which focuses on better integrating and correlating fundamental, clinical, and neuropathological data concerning neurological conditions, employing molecular genetics, biochemistry, experimental analyses of behavioural alterations, and computational neurosciences. In 2011, he also became Scientific Director of the Alzheimer Research Center in Groningen, The Netherlands.


Wostyn P, De Groot V, Van Dam D, Audenaert K, De Deyn PP (2013) Senescent Changes in Cerebrospinal Fluid Circulatory Physiology and Their Role in the Pathogenesis of Normal-tension Glaucoma. Am J Ophthalmol. 2013 156(1):5-14. PubMed Icon Google Scholar Icon