Text Size Normal Text Sizing Button Medium Text Sizing Button Large Text Sizing Button Text Contrast Normal Contrast Button Reverse Contrast ButtonSwitch to Spanish Language Press Room Contact Us Sitemap Sign In Register
Link to Homepage About BrightFocus
BrightFocus
Donate Now Get Involved  
Alzheimer's Disease Research Macular Degeneration Research National Glaucoma Research


Stay Informed: Medical and Research Updates
Connect With Us!
 

 

Gene May Link Diabetes and Alzheimer’s

June 15, 2012

Source:  Genetics

In recent years it became clear that people with diabetes face an ominous prospect—a far greater risk of developing Alzheimer's disease. Now researchers at The City College of New York (CCNY) have shed light on one reason why. Biology Professor Chris Li and her colleagues have discovered that a single gene forms a common link between the two diseases.

A C. elegans worm with green fluorescent protein (GFP) highlighting the APL-1 Alzheimer-related protein in its body. (Credit: Collin Ewald.)

A C. elegans worm with green fluorescent protein (GFP) highlighting the APL-1 Alzheimer-related protein in its body. (Credit: Collin Ewald)

They found that the gene, known to be present in many Alzheimer's disease cases, affects the insulin pathway. Disruption of this pathway is a hallmark of diabetes. The finding could point to a therapeutic target for both diseases. The researchers report their finding in the June 2012 issue of the journal Genetics.

"People with type 2 diabetes have an increased risk of dementia. The insulin pathways are involved in many metabolic processes, including helping to keep the nervous system healthy," said Professor Li, explaining why the link is not far-fetched.

Although the cause of Alzheimer's is still unclear, one criterion for diagnosis of the disease after death is the presence of sticky plaques of amyloid protein in decimated portions of patients' brains.

Mutations in the human "amyloid precursor protein" (APP) gene, or in genes that process APP, show up in cases of Alzheimer's that run in families. In the study, Professor Li and her colleagues scrutinized a protein called APL-1, made by a gene in the worm Caenorhabditis elegans (C. elegans ) that happens to be a perfect stand-in for the human Alzheimer's disease gene.

"What we found was that mutations in the worm-equivalent of the APP gene slowed their development, which suggested that some metabolic pathway was disrupted," said Professor Li. "We began to examine how the worm-equivalent of APP modulated different metabolic pathways and found that the APP equivalent inhibited the insulin pathway."

This suggested that the human version of the gene likely plays a role in both Alzheimer's disease and diabetes.  

They also found that additional mutations in the insulin pathway reversed the defects of the APP mutation. This helped explain how these genes are functionally linked.

The APL-1 is so important, they found, that “when you knock out the worm-equivalent of APP, the animals die," Li explained. “This tells us that the APP family of proteins is essential in worms, as they are essential in mammals,” like us.

Professor Li and her colleagues hope that this new insight will help focus research in ways that might lead to new therapies in the treatment of both Alzheimer's disease and diabetes.

"This is an important discovery, especially as it comes on the heels of the U.S. government's new commitment to treat and prevent Alzheimer's disease by 2025," said Dr. Mark Johnston, editor-in-chief of "Genetics." "We know there's a link between Alzheimer's and diabetes, but until now, it was somewhat of a mystery. This finding could open new doors for treating and preventing both diseases."

The research has identified one link in the chain, an Alzheimer's disease-related protein to the insulin pathway. This may provide insights into why type II diabetes patients are at higher risk for Alzheimer's. However, the protein fragments into many parts, each of which may attach to and signal neurons and other cells along the way. "The big question," said Professor Li, “Is how the amyloid precursor protein and its cleavage products intersect with the insulin pathway.”

Each intersection offers a possible target for drugs and other treatment. Professor Li plans to continue down the pathway, mapping its crossroads as she goes.

Professor Li conducted the research with then CUNY Graduate Center – City College graduate student, Collin Y. Ewald, and research assistant, Daniel A. Raps.

Adapted from the City College of New York

 

View all news updates for Alzheimer's disease


Disclaimer: The information provided in this section is a public service of the BrightFocus Foundation, and should not in any way substitute for the advice of a qualified healthcare professional, and is not intended to constitute medical advice. Although we take efforts to keep the medical information on our website updated, we cannot guarantee that the information on our website reflects the most up-to-date research. Please consult your physician for personalized medical advice; all medications and supplements should only be taken under medical supervision. BrightFocus Foundation does not endorse any medical product or therapy.

Some of the content in this section is adapted from other sources, which are clearly identified within each individual item of information.

Shop for a Cause YouTube Twitter Connect With Us Pinterest Google+