A New Approach to Optic Nerve Regeneration

Fenquan Zhou, PhD
Johns Hopkins University (Baltimore, MD)
Year Awarded:
2017
Grant Duration:
July 1, 2017 to June 30, 2019
Disease:
Glaucoma
Award Amount:
$150,000
Grant Reference ID:
G2017037
Award Type:
Standard
Award Region:
US Northeastern

This grant is made possible in part by a bequest from the Timothy Miles Charitable Trust.

Fenquan Zhou, PhD

I [am] impressed with advances in optic nerve regeneration. If more innovative studies could be devoted to this field, we may be able to restore vision for patients.

Read More

Reprogramming Retinal Ganglion Cells for Axon Regeneration

Summary

The proposed study aims to investigate two novel approaches for promoting long distance (ie, eye to brain) optic nerve regeneration. First based on our completed genetic study we will test if pharmacological inhibition of an identified protein via direct eye injection can promote long distance optic nerve regeneration or whether, based on strong preliminary data, manipulation of another novel gene can induce such regeneration. The project will identify a potential translational approach for promoting optic nerve regeneration, and also open a new avenue for identifying novel gene targets that can be manipulated to enhance optic nerve regeneration.

Details

One major cellular event in glaucoma is optic nerve injury leading to disconnection of retinal nerve fibers from the brain. Long distance optic nerve regeneration is the most basic step for reconnecting optic nerve cells with their original innervating targets in the brain and regaining visual function.
 
The retina is made of several layers of cells that sequentially transmit the received light signal to the brain for visual processing. Retinal ganglion cells (RGCs) are the final nerve cells (called neurons) that link the retina to the brain through cellular signaling over long nerve fibers called axons that extend from the optic nerve to the brain. In glaucoma, injury to the optic nerve injury disrupts the transmission of these visual signals to the brain. Therefore, the overall goal of our study is to identify novel and effective approaches for promoting long distance optic nerve regeneration.
 
In the mammalian central nervous system (CNS), mature neurons are unable to regenerate axon after they become injured. This diminished intrinsic axon regeneration ability of mature CNS neurons is regulated by gene expression. Recent studies targeting gene expression and its regulation of intrinsic regenerative ability have produced very promising results in optic nerve regeneration. However, the number of genes/pathways that can be targeted to promote optic nerve regeneration is still very limited, greatly diminishing the translational potential into therapeutic treatments. An important way that gene expression is regulated is through epigenetic modifications without changes in DNA sequences. Based on our preliminary study, we hypothesize that mammalian CNS neurons undergo an epigenetic transition during maturation that leads to silencing of axon growth-promoting genes and upregulation of axon growth-inhibitory genes. Thus, it is possible to reprogram the mature CNS neurons into a regenerating state via remodeling their epigenetic landscape through reprogramming factors or chromatin modulators. In this project, we will first test if a chemical reagent targeting a specific epigenetic molecule can be used to promote optic nerve regeneration. We will then determine if a family of new genes and their associated pathways can be targeted to induce long distance optic nerve regeneration.
 
Our investigation is very innovative because the chemical reagent we are testing has been safely used in animal models for treating various cancers, thus providing a potential novel and safe translational approach for enhancing optic nerve regeneration. Moreover, our study will show for the first time that a specific pathway involved in induced pluripotent stem cell (iPSCs) techniques also play important roles in promoting optic nerve regeneration.
 
The proposed study will open a new avenue for identifying novel genes and pathways that can be manipulated to promote optic nerve regeneration. Because many epigenetic regulators can be manipulated with pharmacological reagents, the study may help identify and develop potential therapeutic approaches for glaucoma-induced optic nerve injury.

About the Researcher

Dr. Fengquan Zhou is an associate professor with more than 20 years’ experience in the field of neural development and regeneration. His current major research interests are focused on the cellular and molecular mechanisms underlying neuronal morphogenesis during development and neural regeneration after injuries. His lab is currently interested in exploring new mechanisms by which neural development and regeneration are regulated, with a focus on epigenetic regulation, including non-coding RNAs, histone modification, and DNA methylation. These studies will have a broad impact on our understanding of various neurodevelopmental disorders and identifying effective approaches for promoting neural regeneration after spinal cord or optic nerve injuries.

Dr. Zhou earned his PhD degree from the State University of New York at Buffalo and completed his postdoctoral training in the Neuroscience Center at the University of North Carolina at Chapel Hill. Since then, he has worked at the Johns Hopkins University School of Medicine as a principal investigator for about 12 years.

Personal Story

As a basic neuroscientist, I have been working on axon growth and regeneration for more than 20 years, during which I witnessed both setbacks and great progress in the field. My lab started to use optic nerve injury as a model system to study mammalian CNS axon regeneration because I was really impressed with recent technical and conceptual advances in the field of optic nerve regeneration. I think that if more innovative studies could be devoted to this field, we may be able to find an effective treatment for glaucoma and restore vision for patients. I hope that my effort in this area will not only advance science but also produce translational outcomes that could help patients with glaucoma or other axonal injury-related diseases. I am very grateful to the BrightFocus donors for funding my glaucoma-related research so that many innovative ideas can be tested, further developed, and eventually become competitive for major grants from the National Institutes of Health.

I am a quiet person who loves watching movies and walking outdoors in parks or trails during my spare time. These activities help to clear my mind and inspire fresh ideas for my research. I am also a fan of Chinese traditional culture, such as Chinese painting, calligraphy, and music played on classical Chinese instruments. A key philosophy of Chinese culture is seeing the whole world in a grain of sand, which is also the principle that directs my research. 

Don't miss out.
Receive research updates, inspiring stories, and expert advice
Please enter your first name.
Please enter your last name.
Keep me informed about: *
Please select at least one.
You must select at least one disease category.