How mutations that lead to Alzheimer's Disease affect calcium levels in neurons

Frank LaFerla, PhD
Regents of the Univ. of California (Irvine, CA)
Year Awarded:
Grant Duration:
April 1, 2000 to March 31, 2002
Alzheimer's Disease
Award Amount:
Grant Reference ID:
Award Type:
Award Region:
US Southwestern

Calcium Dyshomeostasis Induced by Presenilin Mutations


It is known that changes in intracellular calcium cause neuronal cell death and increase the production of beta amyloid, the protein that accumulates to form brain plaques. Dr. Laferla has found that mutations in Presenilin 1 and 2 that cause the early onset of AD also cause changes in intracellular calcium. He is now examining the possible role of the presenilin genes in regulating calcium levels. Utilizing a variety of methodologies and experimental systems for this work, he hopes to increase our understanding of the function of presenilin and its role in AD.


Leissring, M.A., LaFerla, F.M., Callamaras, N., and Parker, I. (2001) Subcellular mechanisms of presenilin-mediated enhancement of calcium signaling. Neurobiology of Disease. 8(3):469-78.

Leissring, M.A., Akbari, Y., Fanger, C.M., Cahalan, M., Mattson, M.P., and LaFerla, F.M. (2000) Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin-1 knock-in mice. Journal of Cell Biology. 149:793-798.

Leissring, M.A., Yamasaki, T.R., Wasco, W., Buxbaum, J.D., Parker, I., and LaFerla, F.M. (2000) Calsenilin reverses presenilin-mediated enhancement of calcium signaling. Proceedings of the National Academy of Sciences U.S.A. 97:8590-8593.

Don't miss out.
Receive research updates, inspiring stories, and expert advice
Please enter your first name.
Please enter your last name.
Keep me informed about: *
Please select at least one.
You must select at least one disease category.