Text Size Normal Text Sizing Button Medium Text Sizing Button Large Text Sizing Button Text Contrast Normal Contrast Button Reverse Contrast Button Switch to Spanish Language Press Room Contact Us Sitemap Sign In Register
Link to Homepage About BrightFocus
Donate Now Get Involved  
Alzheimer's Disease Research Macular Degeneration Research National Glaucoma Research

Sign up for Email Notifications
If you would like to be notified when funding or meeting opportunities are announced please click on the link below.

Sign up for new announcements.

Please add ResearchGrants@BrightFocus.org to your institution’s white list to insure that the notification is not blocked by your organization’s SPAM filters.

This email list is not sold or distributed, and serves only as an annual reminder of the availability of research support through the BrightFocus Foundation (www.brightfocus.org). Please follow instructions on the notification emails for removal requests.

BrightFocus Research Grants Funding
Grant Funding for Alzheimer's Research
Grant Funding for Macular Degeneration Research
Grant Funding for Glaucoma Research


Alzheimer's Disease Research
Current Award

Dr. Dolores Del Prete

Dolores Del Prete, Ph.D.

Albert Einstein College of Medicine
Bronx, NY

Title: Searching the Main Actors Involved in Human Dementia
Non-Technical Title: Searching the Main Actors Involved in Human Dementia

Luciano D'Adamio, M.D., Ph.D.
Albert Einstein College of Medicine

Duration: July 1, 2013 - June 30, 2015
Award Type: Postdoctoral Fellowship
Award Amount: $100,000


Mutations in genes that regulate the processing of the APP protein (the source of Abeta protein) cause early-onset Familial Dementias (FD) in humans. BRI2 is one of these genes. Dr. D’Adamio’s team has generated a mouse model that faithfully represents the human dementias caused by the mutation in BRI2. In this model, APP processing is increased, and leads to memory loss. Given the fact that these mice mirror the genetic defects of patients, they are ideal to dissect the mechanisms that cause dementia in humans. Therefore, this model is suitable for testing therapies for human dementias, including Alzheimer’s disease. In addition, Dr. Del Prete’s studies proposed in this grant application will serve as a preliminary assessment of BRI2-like drugs that could reduce abnormal APP processing without inhibiting the other proteins that mediate the normal processing of APP.


Alzheimer’s disease (AD) is the most common type of dementia that is clinically characterized as having progressive cognitive deterioration, including loss of memory, reasoning, and language. Mutations in genes that regulate the processing of APP protein cause early-onset Familial Dementias (FD) in humans. All APP disease-causing mutations are located either in the Abeta sequence or near a cleavage site which influences APP processing by different mechanism. Dr. D’Adamio’s team has generated a mouse model that faithfully represents the human dementias caused by the mutation of BRI2 (called FDDki mice). These mice accurately represent the genetic defects of patients and show an increased APP processing, that leads to memory loss.

The aim of this project is to analyze the domains or fragments of APP involved in the development and progression of disease in FDDKI mice. Dr. Del Prete will study the role of APP processing using genetic and biological approaches. Then, there will be further characterization of the mechanisms by which APP processing and APP-derived metabolites mediate memory deficits in FDDKI mice. The finding that the neurological symptoms of FDDKI mice require the abnormal processing of APP, suggests that this model will help to uncover the disease pathways associated with AD.

The innovation of this research is that the experiments don’t rely on Abeta peptide being the ultimate disease-causing protein; it’s the assessment of all domains or fragments of APP to see if they’re involved in causing disease in FDDKI mice. The ultimate goal is to use the discoveries to develop non-amyloid based targets for therapeutic strategies to produce disease-modifying AD drugs.

Investigator Biography:

Dr. Del Prete is a research fellow in the laboratory of Professor Luciano D’Adamio at Albert Einstein College of Medicine. She completed her Ph.D. in the Italian institute of technology, department of neuroscience and brain technologies (NBT) headed by Prof. Fabio Benfenati, and then in the laboratory headed by Dr. Frédéric Checler (Institute of Molecular and Cellular Pharmacology, Valbonne, France).

Dr. Del Prete focused her studies on evaluation of the role of calcium signaling in Alzheimer disease observing that blocking the calcium release decreases levels of b-amyloid (Ab) and cognitive deficits associated with the disorder.