Text Size Normal Text Sizing Button Medium Text Sizing Button Large Text Sizing Button Text Contrast Normal Contrast Button Reverse Contrast Button Switch to Spanish Language Press Room Contact Us Sitemap Sign In Register
Link to Homepage About BrightFocus
BrightFocus
Donate Now Get Involved  
Alzheimer's Disease Research Macular Degeneration Research National Glaucoma Research


Sign up for Email Notifications
If you would like to be notified when funding or meeting opportunities are announced please click on the link below.

Sign up for new announcements.

This email list is not sold or distributed, and serves only as an annual reminder of the availability of research support through the BrightFocus Foundation (www.brightfocus.org). Please follow instructions on the notification emails for removal requests.

 
 
BrightFocus Research Grants Funding
Grant Funding for Alzheimer's Research
Grant Funding for Macular Degeneration Research
Grant Funding for Glaucoma Research
 

 

Macular Degeneration Research
Current Award

Dr. Magali Saint-Geniez

Magali Saint-Geniez, Ph.D.

The Schepens Eye Research Institute
Boston, MA

Title: Role of PGC-1 Isoforms in RPE Function and Oxidative Stress: Implications for AMD
Non-Technical Title: Role of Cell Metabolism Regulators in Cell Function and Death and Implications for AMD

Acknowledgements: This grant was made possible by the generosity of the Ivan Bowen Family Foundation, in memory of Ivan Bowen, who lived with macular degeneration.
Duration: July 1, 2013 - June 30, 2015
Award Type: Standard
Award Amount: $120,000

Summary:

The goal of this study is to test the hypothesis that a new critical regulator of a cell’s metabolism and survival, called PGC-1, may play an essential role in the function of RPE cells and that they protect RPE cells from oxidative damage and degeneration. RPE, a pigmented cell layer at the back of the eye, supports photoreceptor function and has been implicated in age-dependent macular degeneration (AMD), a leading cause of blindness. Insights into the ability of PGC-1 to regulate function and survival in RPE may thus provide a new target for therapeutics to prevent retinal degenerative disorders, such as AMD.

Details:

Dry age-dependent macular degeneration (AMD) is a highly prevalent blinding disease lacking any form of effective therapy. In dry AMD, defect and/or loss of the retinal pigment epithelium (RPE), a thin layer of cells that nourishes, recycles and detoxifies the photoreceptors (light sensitive cells of the retina), is thought to be a key event in AMD progression. Proper regulation of metabolism and oxidative stress is critical for the function and survival of all the cells in the human body; however how RPE metabolism is molecularly controlled under healthy and diseased conditions is unknown and the purpose of our research.  Dr. Saint-Geniez’ team is characterizing the role of a master-regulator of cellular metabolism in RPE cells, called PGC-1, and tests its ability to protect RPE from toxic stimuli, such as oxidative stress. Their ultimate goal is to use this pathway as a new therapeutic approach for the treatment of dry AMD.

In collaboration with experts in RPE biology, cellular metabolism and AMD, Dr. Saint-Geniez will: 1) determine in vitro (at the laboratory bench) the function of this master-regulator of RPE metabolism and behavior (PGC-1);, 2) create a new animal model in which expression of this gene is blocked specifically in the RPE and at a desired time. This model will enable the team to test the hypothesis that dysregulation of this gene is implicated in the progression of AMD.

The innovation of this project lays in both the novelty of the pathway being analyzed and the techniques employed, such as the generation of new mouse models by modern genetics, and the application of state-of-the-art technologies to evaluate the metabolic function in RPE. By characterizing the mechanisms of metabolic regulation and degeneration in the eye, Dr. Saint-Geniez’ discoveries may lead to new, effective therapies for treatment of AMD.

Investigator Biography:

Dr. Saint-Geniez is an Assistant Professor of Ophthalmology at the Harvard Medical School and an Assistant Scientist at the Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts. She completed her post-doctoral studies on the role of VEGF in ocular development and maintenance of retinal homeostasis in the laboratory of Dr. Patricia D’Amore (HMS, Boston). Her research centers on the role of various metabolic genes in diseases of the retina. In addition, Dr. Saint-Geniez is the recipient of the NIH Director’s New Innovator Award for the development of new therapies combining bioengineering and stem cell technologies for the treatment of retinal degenerative diseases.