Text Size Normal Text Sizing Button Medium Text Sizing Button Large Text Sizing Button Text Contrast Normal Contrast Button Reverse Contrast Button Switch to Spanish Language Press Room Contact Us Sitemap Sign In Register
Link to Homepage About BrightFocus
Donate Now Get Involved  
Alzheimer's Disease Research Macular Degeneration Research National Glaucoma Research

Sign up for Email Notifications
If you would like to be notified when funding or meeting opportunities are announced please click on the link below.

Sign up for new announcements.

Please add ResearchGrants@BrightFocus.org to your institution’s white list to insure that the notification is not blocked by your organization’s SPAM filters.

This email list is not sold or distributed, and serves only as an annual reminder of the availability of research support through the BrightFocus Foundation (www.brightfocus.org). Please follow instructions on the notification emails for removal requests.

BrightFocus Research Grants Funding
Grant Funding for Alzheimer's Research
Grant Funding for Macular Degeneration Research
Grant Funding for Glaucoma Research


Alzheimer's Disease Research
Completed Award

Dr. Bruce Lamb

Bruce Lamb, Ph.D.

Lerner Research Institute at Cleveland Clinic
Cleveland, OH, United States

Title: Role of p38 MAPK in the Microglial-Mediated Alzheimer's Disease Tau Pathology
Non-Technical Title: The Role of p38 MAPK as a Putative Drug Target Against Alzheimer's Disease Tangle Pathology

Kiran Bhaskar, Ph.D. ,

Duration: July 1, 2011 - June 30, 2013
Award Type: Pilot
Award Amount: 150,000


In a recent study (published in October 7th, 2010 issue of the journal NEURON), we have identified p38 MAPK as a link between neuroinflammation, cell-autonomous to microglia, and Alzheimer's disease tau pathology. In the current study, the role of a safe, orally bioavailable and brain permeable p38 MAPK inhibitor (MW01-2-069A-SRM) in preventing tau pathology will be examined both in vitro utilizing primary neurons and in vivo utilizing a unique transgenic mouse model of tauopathy (hTau mice).


Dr. Bruce Lamb's laboratory has already shown that inflammation by a particular immune cell, called microglia, can start and accelerate tangles in cell cultures and in a transgenic mouse model of Alzheimer's disease. A protein, called p38 MAPK, is involved with this inflammation and subsequent creation of tangles. Dr. Lamb and collaborators will determine whether a drug, called 069A, will target the p38 MAPK protein and prevent tangles from forming in the brains of mice with a human form of Alzheimer's disease. Collaborators have adapted the 069A drug to enable it to be taken by mouth and get into the brain. If an experimental increase in p38 MAPK causes an increase in tangles and intervention with 069A prevents it, then a future goal would be to test this drug in a human clinical trial for treatment of Alzheimer's disease.

Progress Updates:

The overall goal of this study is to test the effects of novel, brain permeable and orally bioavailable inhibitors of p38 MAPK (an enzyme activated during brain inflammation that may be responsible for triggering the formation of Alzheimer's disease tangles) against two models of Alzheimer’s disease—inflammation-induced tau tangles in cell culture and a mouse model of human tauopathy (hTau). The p38 MAPK inhibitors are thought to prevent the toxic change in tau protein (called hyperphosphorylation), which may prevent the tangles from forming.

Normally, nerve cells treated with cell culture media derived from cultured microglia (immune cells in the brain) causes p38 MAPK activation and tau hyperphosphorylation, simulating what happens in an Alzheimer’s brain. Drs. Bhaskar’ and Lamb’s team has observed that treating these nerve cells in culture with two different types of p38 MAPK inhibitors (called Inhibitor #1 and Inhibitor #2) completely blocked the p38 MAPK activation and significantly reduced tau hyperphosphorylation. Notably, these inhibitors showed maximum effect in blocking tau phosphorylation around 90 minutes after adding microglial culture media. In the second set of studies, the team performed dose-response analysis, where neurons were treated with different concentrations of p38 MAPK inhibitors prior to adding the microglial culture media. The results suggest that maximum p38 MAPK inhibition occurred at a concentration of 0.02 µM for Inhibitor #1 and was higher for Inhibitor #2, suggesting that the former inhibitor is more potent than the latter. Finally, the team gave the two inhibitors by mouth for 14 days to aged (18 months of age or older) hTau mice (3-6 animals per group) with advanced stages of tangle pathology, similar to those that occur in human Alzheimer’s disease. Mice treated with either drug showed marked decrease in p38 MAPK activation and significant reduction in tau phosphorylation. Notably, Inhibitor #1 displayed higher efficacy than Inhibitor #2. Together, the preliminary results suggest that inhibiting p38 MAPK activation reduces tau phosphorylation both in cell culture and in animal model of tauopathy. Drs. Bhaskar’ and Lamb’s team is currently studying whether this inhibition of p38 MAPK and reduced tau pathology translates into improved cognitive function in the hTau mice.