Text Size Normal Text Sizing Button Medium Text Sizing Button Large Text Sizing Button Text Contrast Normal Contrast Button Reverse Contrast Button Switch to Spanish Language Press Room Contact Us Sitemap Sign In Register
Link to Homepage About BrightFocus
Donate Now Get Involved  
Alzheimer's Disease Research Macular Degeneration Research National Glaucoma Research

Sign up for Email Notifications
If you would like to be notified when funding or meeting opportunities are announced please click on the link below.

Sign up for new announcements.

Please add ResearchGrants@BrightFocus.org to your institution’s white list to insure that the notification is not blocked by your organization’s SPAM filters.

This email list is not sold or distributed, and serves only as an annual reminder of the availability of research support through the BrightFocus Foundation (www.brightfocus.org). Please follow instructions on the notification emails for removal requests.

BrightFocus Research Grants Funding
Grant Funding for Alzheimer's Research
Grant Funding for Macular Degeneration Research
Grant Funding for Glaucoma Research


Macular Degeneration Research
Current Award

Dr. Noriko Esumi

Noriko Esumi, M.D., Ph.D.

Johns Hopkins University
Baltimore, MD, United States

Title: Mouse Models For Studying The Role Of Inflammation in AMD
Non-Technical Title: Mouse Models For Studying Factors That Control Inflammation in AMD

Duration: July 1, 2012 - June 30, 2015
Award Type: Standard
Award Amount: $100,000


Age-related macular degeneration (AMD) is thought to result from abnormalities of the retinal pigment epithelium (RPE), the cell layer that nourishes and detoxifies the retina. Chronic inflammation is a major underlying condition of aging, taking its toll on many organs. Various environmental stimuli, such as oxidative stress and inflammatory molecules, converge upon a critical master regulator of inflammation. However, the specific roles of chronic inflammation and its master-regulator protein in the RPE and AMD are still unknown. Therefore, Dr. Noriko Esumi and colleagues propose to engineer two new types of mice to address the biological role of this inflammation master regulator and its key partner in the RPE, and to ultimately evaluate whether targeting these inflammation proteins is a possible strategy for AMD treatment or prevention.


Chronic inflammation is thought to be an important underlying condition of aging and many age-related diseases, including AMD; but it is not known specifically how chronic inflammation ages the RPE, essentially tipping the scales toward developing AMD. Dr. Noriko Esumi and colleagues will provide two new types of engineered mice to study the involvement of inflammation in aging of the RPE and how this might lead to AMD. The first aim of the study involves making a mouse in which the master regulator of inflammation can be blocked at desired times for a desired duration in the RPE by giving the mouse a drug. The second aim of the study involves making another mouse in which the second protein that controls the master regulator of inflammation can be expressed at higher levels at desired times for a desired duration in the RPE. For both types of mice, Esumi's team will check whether the introduced genes are expressed and activated by the drug. Then, this team will begin to test whether the changes in gene expression can protect the RPE cells from oxidative stress.

Most previous studies to understand the role of inflammation have been conducted using cultured RPE cells for short-term observation, not with live animals for long-term analyses. Therefore, this project is unique in three specific ways: 1) it provides for the first time tools for studying the role of inflammation and its critical regulators in the RPE cells of live animals; 2) the gene of interest in the mice can be induced at desired times for a desired duration by giving a drug, and therefore can be reversed; and 3) one of the regulators is clearly a new player in studies of RPE and AMD. Depending on the results of this study, the master regulator and its modulators could be great candidates for new drugs to treat or prevent AMD.

Investigator Biography:

Dr. Noriko Esumi is an Assistant Professor of Ophthalmology at the Johns Hopkins University School of Medicine. She completed her doctoral studies, both M.D. and Ph.D., in Japan and started her career as a Japanese pediatric oncologist. Because she quickly realized the importance of biomedical research for improving treatment of patients, she decided to devote herself to basic research in the U.S. Esumi's laboratory aims to increase understanding of the physiology and disease of the retinal pigment epithelium (RPE) at the molecular level. She is interested in the process of RPE aging and, therefore, particularly in the pathophysiology of age-related macular degeneration (AMD). In addition to her current BrightFocus award, Esumi was previously awarded a BrightFocus-MDR grant as well as NIH R01 and R21 grants.