Text Size Normal Text Sizing Button Medium Text Sizing Button Large Text Sizing Button Text Contrast Normal Contrast Button Reverse Contrast Button Switch to Spanish Language Press Room Contact Us Sitemap Sign In Register
Link to Homepage About BrightFocus
BrightFocus
Donate Now Get Involved  
Alzheimer's Disease Research Macular Degeneration Research National Glaucoma Research


Sign up for Email Notifications
If you would like to be notified when funding or meeting opportunities are announced please click on the link below.

Sign up for new announcements.

Please add ResearchGrants@BrightFocus.org to your institution’s white list to insure that the notification is not blocked by your organization’s SPAM filters.

This email list is not sold or distributed, and serves only as an annual reminder of the availability of research support through the BrightFocus Foundation (www.brightfocus.org). Please follow instructions on the notification emails for removal requests.

 
 
BrightFocus Research Grants Funding
Grant Funding for Alzheimer's Research
Grant Funding for Macular Degeneration Research
Grant Funding for Glaucoma Research
 

 

Macular Degeneration Research
Completed Award

Dr. Ilyas Washington

Ilyas Washington, Ph.D.

Columbia University Medical Center (CUMC)
New York, NY

Title: Deuterium enrichment of vitamin A slows lipofuscin formation
Non-Technical Title: Modified vitamin A slows lipofuscin formation: a step towards a clinical trial to prevent vision loss in Stargardt disease

Acknowledgements: Recipient of the Ernest R. Kuykendall award for AMD research
Duration: April 1, 2010 - March 31, 2013
Award Type: Standard
Award Amount: $100,000

Summary:

The big picture: to determine the extent to which lipofuscin, a naturally occurring pigment soluble in fat and found in aging tissues, contributes to vision loss. The objectives for our proposed research are to gather data in order to be able to proceed with a clinical trial designed to evaluate the extent to which C20-D3-vitamin A can impede the formation of ocular lipofuscin as well as to aid in the development of diagnostic methods to evaluate treatment compliance during future clinical trials.

Details:

This research investigates a method to slow the formation of ocular lipofuscin, a naturally occurring pigment soluble in fat and found in aging tissues. The development of lipofuscin correlates with the progression of various macular dystrophies and degenerations. As such, methods to halt or reverse the formation of ocular lipofuscin are highly sought after as means to better understand the link between lipofuscin and macular degenerations or dystrophies and as clinical interventions for their treatment. The objectives for our proposed research are to gather data in order to be able to proceed with a clinical trial designed to evaluate the extent to which C20-D3-vitamin A can impede the formation of ocular lipofuscin as well as to aid in the development of diagnostic methods to evaluate treatment compliance during the trial. This trial will help to determine the extent to which lipofuscin contributes to vision loss. The most innovative aspect of this research is that it involves a method to slow down the formation of ocular lipofuscin without interrupting the visual cycle or normal vitamin A metabolism, which can result in poor night vision. At the completion of our study, we anticipate that we will be able to: 1) determine whether treatment with C20-D3-vitamin A would be practical in humans; 2) evaluate the ability of C20-D3-vitamin A to slow lipofuscin formation in another animal model; 3) determine the time it would take for the vitamin to start working in order to better estimate proper dosing in future clinical studies; 4) evaluate whether urine analysis can be used as a potential method to measure treatment compliance in future clinical studies; and 5) elucidate how vitamin A is dynamically used in the body to promote vision and health.

Progress Updates:

Preliminary results from this research helped attract further support for the development of a drug, called ALK-001, for the prevention of vision loss due to certain types of macular degeneration. ALK-001 is designed to slow the formation of toxic vitamin A aggregates and deposits, called lipofuscin, in the retina. Dr. Washington’s team showed that ALK-001 could reach the retina at levels sufficient to bring about a therapeutic effect. Before obtaining this research grant, existing data could predict how quickly ALK-001 would reach the retina in humans. In general, poor drug pharmacokinetics and delivery to the tissue of interest is responsible for disqualify drug candidates in about 80% of cases, despite promising animal results. As such, the team’s demonstration that ALK-001 rapidly reaches the retina in an appropriate swine (pig) model is a major step in ALK-001's development. This research has helped provide data critical in the clinical development of ALK-001, taken over by the biotechnology company, Alkeus Pharmaceuticals. Dr. Washington is the Scientific Founder of Alkeus Pharmaceuticals.

::

]]