Text Size Normal Text Sizing Button Medium Text Sizing Button Large Text Sizing Button Text Contrast Normal Contrast Button Reverse Contrast Button Switch to Spanish Language Press Room Contact Us Sitemap Sign In Register
Link to Homepage About BrightFocus
BrightFocus
Donate Now Get Involved  
Alzheimer's Disease Research Macular Degeneration Research National Glaucoma Research


Sign up for Email Notifications
If you would like to be notified when funding or meeting opportunities are announced please click on the link below.

Sign up for new announcements.

This email list is not sold or distributed, and serves only as an annual reminder of the availability of research support through the BrightFocus Foundation (www.brightfocus.org). Please follow instructions on the notification emails for removal requests.

 
 
BrightFocus Research Grants Funding
Grant Funding for Alzheimer's Research
Grant Funding for Macular Degeneration Research
Grant Funding for Glaucoma Research
 

 

National Glaucoma Research
Current Award

Dr. Weiming Mao

Weiming Mao, Ph.D.

University of North Texas Health Science Center
Fort Worth, TX, United States

Title: Crosstalk of TGF-Beta and Wnt Pathways in the Trabecular Meshwork
Non-Technical Title: Crosstalk of Two Glaucoma-Associated Pathways in the Trabecular Meshwork

Acknowledgements: Recipient of the Thomas R. Lee award for National Glaucoma Research.
Duration: July 1, 2011 - June 30, 2014
Award Type: Standard
Award Amount: $100,000

Summary:

TGF-beta and Wnt signaling pathways are involved in intraocular pressure regulation and glaucoma pathogenesis. We are trying to identify the genes that mediate the crosstalk between the two pathways. By using these genes as therapeutic targets, we will be able manipulate both pathways at the same time and find a more effective way of restoring aqueous outflow in the TM, thereby lowering IOP and treating glaucoma.

Details:

Changes in two networks of proteins—named the TGF‐beta and Wnt pathways—can promote “clogs” in the drainage system of the eye—the trabecular meshwork (TM). These clogs cause an increase in eye pressure and may lead to glaucoma. Dr. Weiming Mao and colleagues will first screen the TGF‐beta and Wnt pathways to identify the specific proteins that are involved in cross‐talk between these two networks. Then, they will test whether the TM drain structure and eye pressure can be brought back to normal after genetically increasing or decreasing the levels of these cross‐talk proteins in cultured cells and animal models of glaucoma. If one of the proteins ends up influencing eye pressure through the TGF‐beta and Wnt pathways, then a drug could be designed to better control eye pressure in glaucoma.

Publications:

Mao et al., Existence of the canonical Wnt signaling pathway in the human trabecular meshwork. IOVS 2012 Oct 9;53(11):7043-51.

Mao et al., (2012) Crosstalk Between The Wnt And Tgf-beta Pathways In The Trabecular Meshwork. ARVO E-abstract 53:2747

Mao W., Millar J.C., Wang W.H., Silverman S.M., Liu Y., Wordinger R.J., Rubin J.S., Pang I.H., Clark A.F. (2012) Existence of the canonical Wnt signaling pathway in the human trabecular meshwork. IOVS 53(11):7043-51 PubMed Icon Google Scholar Icon

Progress Updates:

Dr. Mao’s team has discovered that there are components that mediate the cross-talk between the TGF-Beta and Wnt protein signaling pathways in human and cow trabecular meshwork (TM) cells. They found four genes in primary human TM cells that are significantly affected by this process. In the future, the team will overexpress, knock down, or use small molecule inhibitors to investigate whether manipulation of these four genes is able to “cut-off” the cross-talk. In addition, they will test whether two other “hypothesis-driven” target genes are involved in this process.