Text Size Normal Text Sizing Button Medium Text Sizing Button Large Text Sizing Button Text Contrast Normal Contrast Button Reverse Contrast Button Switch to Spanish Language Press Room Contact Us Sitemap Sign In Register
Link to Homepage About BrightFocus
BrightFocus
Donate Now Get Involved  
Alzheimer's Disease Research Macular Degeneration Research National Glaucoma Research


Stay Informed: Medical and Research Updates
Connect With Us! Visit the Children's Corner for Macular Degeneration
 

 

Scientists Program Blood Stem Cells To Become Vision Cells

July 31, 2009

Adapted from the University of Florida

University of Florida researchers were able to program bone marrow stem cells to repair damaged retinas in mice, suggesting a potential treatment for one of the most common causes of vision loss in older people.

The success in repairing a damaged layer of retinal cells in mice implies that blood stem cells taken from bone marrow can be programmed to restore a variety of cells and tissues, including ones involved in cardiovascular disorders such as atherosclerosis and coronary artery disease.

"To our knowledge, this is the first report using targeted gene manipulation to specifically program an adult stem cell to become a new cell type," said Dr. Maria B. Grant, a professor of pharmacology and therapeutics at UF's College of Medicine. "Although we used genes, we also suggest you can do the same thing with drugs—but ultimately you would not give the drugs to the patient, you would give the drugs to their cells. Take the cells out, activate certain chemical pathways, and put the cells back into the patient."

In a paper slated to appear in the September issue of the journal Molecular Therapy, scientists describe how they used a virus carrying a gene that gently pushed cultured adult stem cells from mice toward a fate as retinal cells. Only after the stem cells were reintroduced into the mice did they completely transform into the desired type of vision cells, apparently taking environmental cues from the damaged retinas. At 28 days after receiving the modified stem cells, mice that had previously demonstrated no retinal function were no different than normal mice in electrical measures of their response to light.

After studying the cell-transformation process, scientists were able to bypass the gene manipulation step entirely and instead use chemical compounds that mirrored environmental conditions in the body, thus pointing the stem cells toward their ultimate identities as vision cells.

Scientists chose to build retinal pigment epithelial (RPE) cells, which form the outer barrier of the retina. In addition to being very specialized and easy to identify, RPE cells are faulty in many retinal diseases, including age-related macular degeneration and some forms of blindness related to diabetes.

"This work applies to 85 percent of patients who have age-related macular degeneration," Grant said. "There are no therapies for this devastating disease."

View all news updates for macular degeneration


Disclaimer: The information provided in this section is a public service of the BrightFocus Foundation, and should not in any way substitute for the advice of a qualified healthcare professional, and is not intended to constitute medical advice. Although we take efforts to keep the medical information on our website updated, we cannot guarantee that the information on our website reflects the most up-to-date research. Please consult your physician for personalized medical advice; all medications and supplements should only be taken under medical supervision. BrightFocus Foundation does not endorse any medical product or therapy.

Some of the content in this section is adapted from other sources, which are clearly identified within each individual item of information.

Twitter YouTube Facebook Shop for a Cause Pinterest Google+ Connect With Us