Text Size Normal Text Sizing Button Medium Text Sizing Button Large Text Sizing Button Text Contrast Normal Contrast Button Reverse Contrast ButtonSwitch to Spanish Language Press Room Contact Us Sitemap Sign In Register
Link to Homepage About BrightFocus
BrightFocus
Donate Now Get Involved  
Alzheimer's Disease Research Macular Degeneration Research National Glaucoma Research


Stay Informed: Medical and Research Updates
Connect With Us!
 

 

Scientists Remove Amyloid Plaques From Mice Engineered to Show Features of Alzheimer's Disease

October 16, 2009

Adapted from the Federation of American Societies for Experimental Biology (FASEB)

A breakthrough discovery by scientists from the Mayo Clinic in Jacksonville, Florida, may lead to a new treatment for Alzheimer's disease that actually removes amyloid plaques—considered a hallmark of the disease—from patients' brains. This discovery, published online in The FASEB Journal, is based on the unexpected finding that when the brain's immune cells (microglia) are activated by the interleukin-6 protein (IL-6), they actually remove plaques instead of causing them or making them worse. The research was performed in a model of Alzheimer's disease established in mice.

"Our study highlights the notion that manipulating the brain's immune response could be translated into clinically tolerated regimens for the treatment of neurodegenerative diseases," said Pritam Das, co-author of the study, from the Mayo Clinic in Jacksonville, Florida.

Das and colleagues made this unexpected discovery when they initially set out to prove that the activation of microglia trigger inflammation, making the disease worse. Their hypothesis was that microglia would attempt to remove the plaques, but would be unable to do so, and in the process cause excessive inflammation. To the surprise of the researchers, when microglia were activated by IL-6, they cleared the plaques from the brains.

This research suggests that manipulating the brain's own immune cells through inflammatory mediators could lead to new therapeutic approaches for the treatment of neurodegenerative diseases, particularly Alzheimer's disease.

"This model is as close to human pathology as animal models get. These results give us an exciting lead to newer, more effective treatments of Alzheimer's disease," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "This study demonstrates that investment in experimental biology is the best way to approach the challenge posed by an aging population to the cost of health care."

On behalf of its donors, Alzheimer's Disease Research, a program of the BrightFocus Foundation, is proud to have funded Dr. Das for this very important work.

View all news updates for Alzheimer's disease


Disclaimer: The information provided in this section is a public service of the BrightFocus Foundation, and should not in any way substitute for the advice of a qualified healthcare professional, and is not intended to constitute medical advice. Although we take efforts to keep the medical information on our website updated, we cannot guarantee that the information on our website reflects the most up-to-date research. Please consult your physician for personalized medical advice; all medications and supplements should only be taken under medical supervision. BrightFocus Foundation does not endorse any medical product or therapy.

Some of the content in this section is adapted from other sources, which are clearly identified within each individual item of information.

Shop for a Cause YouTube Twitter Connect With Us Pinterest Google+