Text Size Normal Text Sizing Button Medium Text Sizing Button Large Text Sizing Button Text Contrast Normal Contrast Button Reverse Contrast ButtonSwitch to Spanish Language Press Room Contact Us Sitemap Sign In Register
Link to Homepage About BrightFocus
BrightFocus
Donate Now Get Involved  
Alzheimer's Disease Research Macular Degeneration Research National Glaucoma Research


Stay Informed: Medical and Research Updates
Connect With Us!
 

 

Potential Alzheimer's Disease Drug Slows Damage and Symptoms in Animal Model

March 14, 2012

Source: Neurology

Dr. Kurt R. Brunden, senior author of this study, is currently funded by BrightFocus Alzheimer's Disease Research to find and test other candidate drugs that can prevent tau from "clumping" unnaturally in the brain.

 

A study published this week in the Journal of Neuroscience shows that the compound epothilone D (EpoD) is effective in preventing further neurological damage and improving cognitive performance in a mouse model of Alzheimer's disease (AD). The results establish how the drug might be used in early-stage AD patients.

Investigators from the Perelman School of Medicine at the University of Pennsylvania, led by first author Bin Zhang, MD, PhD, senior research investigator, and senior author Kurt R. Brunden, PhD, Director of Drug Discovery at the Center for Neurodegenerative Disease Research (CNDR), administered EpoD to aged mice that had memory deficits and inclusions within their brains that resemble the tangles formed by misfolded tau protein, a hallmark of AD. In nerve cells, tau normally stabilizes structures called microtubules, the molecular railroad tracks upon which cellular cargo is transported. Tangles may compromise microtubule stability, with resulting damage to nerve cells. A drug that could increase microtubule stability might improve nerve-cell function in AD and other diseases where tangles form in the brain.

EpoD acts by the same microtubule-stabilizing mechanism as the FDA-approved cancer drug paclitaxel (Taxol™). These drugs prevent cancer cell proliferation by over-stabilizing specialized microtubules involved in the separation of chromosomes during the process of cell division. However, the Penn researchers previously demonstrated that EpoD, unlike paclitaxel, readily enters the brain and so may be useful for treating AD and related disorders.

After three months of receiving EpoD, additional tau clumps did not form in the brains of the aged AD mice, and nerve-cell function was increased compared to the AD mice that did not receive drug. What's more, the EpoD-treated mice showed improvements in learning and memory. Importantly, the doses of EpoD that resulted in these benefits were much lower than had previously been used in Phase II clinical testing of EpoD in cancer patients. The investigators observed no side-effects — including the suppression of the immune system and peripheral nerve damage -- in the transgenic mice that received EpoD.

These results suggest that low doses of EpoD might have therapeutic benefit in AD and related neurodegenerative diseases, such as frontotemporal lobar degeneration or progressive supranuclear palsy, where tangles are the primary brain pathology.

Co-authors Virginia M.-Y. Lee, PhD, CNDR director, and John Trojanowski, MD, PhD, director of the Institute on Aging at Penn and CNDR co-director, introduced the concept of using microtubule-stabilizing drugs over 15 years ago to counteract tangles of tau and compensate for the loss of normal tau function.

The Penn CNDR researchers, in collaboration with co-authors Amos B. Smith, III, PhD, the Rhodes Thompson Professor of Chemistry, and Carlo Ballatore, PhD, from the Penn Department of Chemistry, previously identified EpoD as a lead microtubule-stabilizing agent for evaluation in AD mouse models after characterizing several members of the epothilone family of compounds. Unlike many microtubule-stabilizing compounds, EpoD readily enters the brain, where it appears to persist for a much longer time than in the blood. This feature may explain why low doses were both effective and safe in the mouse model of AD.

Original Scientific Publication: http://www.jneurosci.org/content/32/11/3601.abstract

The work significantly extends an earlier study published in the Journal of Neuroscience in October 2010.

Adapted from the Perelman School of Medicine at the University of Pennsylvania

View all news updates for Alzheimer's disease


Disclaimer: The information provided in this section is a public service of the BrightFocus Foundation, and should not in any way substitute for the advice of a qualified healthcare professional, and is not intended to constitute medical advice. Although we take efforts to keep the medical information on our website updated, we cannot guarantee that the information on our website reflects the most up-to-date research. Please consult your physician for personalized medical advice; all medications and supplements should only be taken under medical supervision. BrightFocus Foundation does not endorse any medical product or therapy.

Some of the content in this section is adapted from other sources, which are clearly identified within each individual item of information.

Shop for a Cause YouTube Twitter Connect With Us Pinterest Google+