Text Size Normal Text Sizing Button Medium Text Sizing Button Large Text Sizing Button Text Contrast Normal Contrast Button Reverse Contrast ButtonSwitch to Spanish Language Press Room Contact Us Sitemap Sign In Register
Link to Homepage About BrightFocus
BrightFocus
Donate Now Get Involved  
Alzheimer's Disease Research Macular Degeneration Research National Glaucoma Research


Stay Informed: Medical and Research Updates
Connect With Us!
 

 

New Study Suggests That Insulin Could Be Potential Therapy For Alzheimer's Disease

April 4, 2011

Adapted from the University of Buffalo (UB)

A low dose of insulin has been found to suppress the expression in the blood of four precursor proteins involved in the pathogenesis of Alzheimer's disease, according to new clinical research by University at Buffalo endocrinologists. The research, published in March online in the Journal of Clinical Endocrinology and Metabolism, suggests that insulin could have a powerful, new role to play in fighting Alzheimer's disease.

"Our results show clearly that insulin has the potential to be developed as a therapeutic agent for Alzheimer's, for which no satisfactory treatment is currently available," says Paresh Dandona, M.D., Ph.D., UB distinguished professor of medicine in the School of Medicine and Biomedical Sciences and senior author on the study.

One of the four proteins shown in the study to be suppressed by insulin is a precursor to beta amyloid, the main component of plaques considered the hallmark of Alzheimer's disease.

The findings also demonstrate for the first time that the four precursor proteins studied are expressed in peripheral mononuclear cells, white blood cells that are an important component of the immune system.

The paper builds on the UB researchers' earlier work showing that insulin has a potent and rapid anti-inflammatory effect on peripheral mononuclear cells. It also builds on the well-known association between obesity, type 2 diabetes and chronic low-grade inflammation, as well as insulin resistance, all conditions that manifest a significantly increased prevalence of Alzheimer's disease.

In the study, 10 obese, type 2 diabetic patients were infused with two 100 ml units of insulin per hour over a period of four hours. The patients were all taking oral drugs to treat their diabetes; none of them were taking insulin or any antioxidant or non-steroidal anti-inflammatory drugs. The control group received 5 percent dextrose per hour or normal saline solution.

The low-dose insulin was found to suppress the expression of amyloid precursor protein, from which beta amyloid is derived. It also suppressed presenilin-1 and presenilin-2, the two subunits of an enzyme that converts amyloid precursor protein into beta amyloid, which forms the amyloid plaques. Insulin also suppressed glycogen synthase kinase, which is involved in the development of neurofibrillary tangles, the other important component of Alzheimer's disease in the brain.

"Our data show, for the first time, that the peripheral mononuclear cells express some of the key proteins involved in the pathogenesis of Alzheimer's disease," says Dandona. "They demonstrate that these cells can be used for investigating the effect of potential Alzheimer's disease therapies on key proteins involved in the disease.

"Even more importantly, it is likely that insulin has a direct cellular effect on these precursor proteins while also exerting its other anti-inflammatory actions," he continues. "If this effect of insulin proves, in larger studies, to be systemic, then insulin may well be a potential therapeutic agent in treating Alzheimer's disease. The challenge is to deliver insulin directly into the brain, thus avoiding its hypoglycemic effect."

Fortunately, Dandona says, a previous preliminary study has shown that intranasal delivery of insulin can lead to its entry into the brain along the olfactory nerves and that its administration may improve cognitive function in patients with Alzheimer's disease. However, he cautions, the mode of action is not known.

"Our study provides a potential rational mechanism," he says.

View all news updates for Alzheimer's disease


Disclaimer: The information provided in this section is a public service of the BrightFocus Foundation, and should not in any way substitute for the advice of a qualified healthcare professional, and is not intended to constitute medical advice. Although we take efforts to keep the medical information on our website updated, we cannot guarantee that the information on our website reflects the most up-to-date research. Please consult your physician for personalized medical advice; all medications and supplements should only be taken under medical supervision. BrightFocus Foundation does not endorse any medical product or therapy.

Some of the content in this section is adapted from other sources, which are clearly identified within each individual item of information.

Shop for a Cause YouTube Twitter Connect With Us Pinterest Google+