Text Size Normal Text Sizing Button Medium Text Sizing Button Large Text Sizing Button Text Contrast Normal Contrast Button Reverse Contrast ButtonSwitch to Spanish Language Press Room Contact Us Sitemap Sign In Register
Link to Homepage About BrightFocus
BrightFocus
Donate Now Get Involved  
Alzheimer's Disease Research Macular Degeneration Research National Glaucoma Research


Stay Informed: Medical and Research Updates
Connect With Us!
 

 

Alzheimer’s Missing Link Found: Is A Promising Target For New Drugs

September 5, 2013
Source: Neuron

Dr. Stephen StrittmatterBrightFocus Foundation’s Alzheimer’s Disease Research program is currently funding Dr. Stephen Strittmatter for a project to determine whether drugs blocking prion protein have potential use as a therapy for Alzheimer’s disease.




Yale School of Medicine researchers have discovered a protein that is the missing link in the complicated chain of events that lead to Alzheimer’s disease, they report in the September 4 issue of the journal Neuron. Researchers also found that blocking the protein with an existing drug can restore memory in mice with brain damage that mimics the disease.

“What is very exciting is that of all the links in this molecular chain, this is the protein that may be most easily targeted by drugs,” said Stephen Strittmatter, the Vincent Coates Professor of Neurology and senior author of the study. “This gives us strong hope that we can find a drug that will work to lessen the burden of Alzheimer’s.”

Scientists have already provided a partial molecular map of how Alzheimer’s disease destroys brain cells. In earlier work, Strittmatter’s lab showed that the amyloid-beta peptides, which are a hallmark of Alzheimer’s, couple with prion proteins on the surface of neurons. By an unknown process, the coupling activates a molecular messenger within the cell called Fyn.

In the Neuron paper, the Yale team reveals the missing link in the chain, a protein within the cell membrane called metabotropic glutamate receptor 5 or mGluR5. When the protein is blocked by a drug similar to one being developed for Fragile X syndrome, the deficits in memory, learning, and synapse density were restored in a mouse model of Alzheimer’s.

Strittmatter stressed that new drugs may have to be designed to precisely target the amyloid-prion disruption of mGluR5 in human cases of Alzheimer’s and said his lab is exploring new ways to achieve this.

Adapted from Yale University

View all news updates for Alzheimer's disease


Disclaimer: The information provided in this section is a public service of the BrightFocus Foundation, and should not in any way substitute for the advice of a qualified healthcare professional, and is not intended to constitute medical advice. Although we take efforts to keep the medical information on our website updated, we cannot guarantee that the information on our website reflects the most up-to-date research. Please consult your physician for personalized medical advice; all medications and supplements should only be taken under medical supervision. BrightFocus Foundation does not endorse any medical product or therapy.

Some of the content in this section is adapted from other sources, which are clearly identified within each individual item of information.

Shop for a Cause YouTube Twitter Connect With Us Pinterest Google+